Highlights d Cleaved inner ear cochlin LCCL secretes to perilymph space post-bacterial infection d LCCL induces bacterial aggregation in the scala tympani d Spatiotemporal innate immune response by LCCL protects the sensory organ of Corti d LCCL rescues Coch À/À mouse post-Pseudomonas inner ear infection hearing loss
Outer hair cell (OHC) degeneration is a major cause of progressive hearing loss and presbycusis. Despite the high prevalence of these disorders, targeted therapy is currently not available. Methods: We generated a mouse model harboring Kcnq4 W276S/+ to recapitulate DFNA2, a common genetic form of progressive hearing loss accompanied by OHC degeneration. After comprehensive optimization of guide RNAs, Cas9s, vehicles, and delivery routes, we applied in vivo gene editing strategy to disrupt the dominant-negative allele in Kcnq4 and prevent progressive hearing loss. Results: In vivo gene editing using a dual adeno-associated virus package targeting OHCs significantly improved auditory thresholds in auditory brainstem response and distortion-product otoacoustic emission. In addition, we developed a new live-cell imaging technique using thallium ions to investigate the membrane potential of OHCs and successfully demonstrated that mutant allele disruption resulted in more hyperpolarized OHCs, indicating elevated KCNQ4 channel activity. Conclusion: These findings can facilitate the development of targeted therapies for DFNA2 and support the use of CRISPR-based gene therapy to rectify defects in OHCs.
Objectives: Late-onset, down-sloping sensorineural hearing loss has many genetic and nongenetic etiologies, but the proportion of this commonly encountered type of hearing loss attributable to genetic causes is not well known. In this study, the authors performed genetic analysis using next-generation sequencing techniques in patients showing late-onset, down-sloping sensorineural hearing loss with preserved low-frequency hearing, and investigated the clinical implications of the variants identified. Design: From a cohort of patients with hearing loss at a tertiary referral hospital, 18 unrelated probands with down-sloping sensorineural hearing loss of late onset were included in this study. Down-sloping hearing loss was defined as a mean low-frequency threshold at 250 Hz and 500 Hz less than or equal to 40 dB HL and a mean high-frequency threshold at 1, 2, and 4 kHz greater than 40 dB HL. The authors performed whole-exome sequencing and segregation analysis to identify the genetic causes and evaluated the outcomes of auditory rehabilitation in the patients. Results: There were nine simplex and nine multiplex families included, in which the causative variants were found in six of 18 probands, demonstrating a detection rate of 33.3%. Various types of variants, including five novel and three known variants, were detected in the MYH14, MYH9, USH2A, COL11A2, and TMPRSS3 genes. The outcome of cochlear and middle ear implants in patients identified with pathogenic variants was satisfactory. There was no statistically significant difference between pathogenic variant-positive and pathogenic variant-negative groups in terms of onset age, family history of hearing loss, pure-tone threshold, or speech discrimination scores. Conclusions: The proportion of patients with late-onset, down-sloping hearing loss identified with potentially causative variants was unexpectedly high. Identification of the causative variants will offer insights on hearing loss progression and prognosis regarding various modes of auditory rehabilitation, as well as possible concomitant syndromic features.
Ski-slope hearing loss (HL), which refers to increased auditory threshold at high frequencies, is common in adults. However, genetic contributions to this post-lingual HL remain largely unknown. Here, we prospectively investigated deafness-associated and novel candidate genes causing ski-slope HL. We analyzed 192 families with post-lingual HL via gene panel and/or exome sequencing. With an overall molecular diagnostic rate of 35.4% (68/192) in post-lingual HL, ski-slope HL showed a lower diagnostic rate (30.7%) compared with other conditions (40.7%). In patients who showed HL onset before the age of 40, genetic diagnostic probability was significantly lower for ski-slope HL than for other conditions. Further analysis of 51 genetically undiagnosed patients in the ski-slope HL group identified three variants in delta-like ligand 1 (DLL1), a Notch ligand, which presented in vitro gain-of-function effects on Notch downstream signaling. In conclusion, genetic diagnostic rates in post-lingual HL varied according to audiogram patterns with age-of-onset as a confounding factor. DLL1 was identified as a candidate gene causing ski-slope HL.
The His723Arg (H723R) mutation in SLC26A4, encoding pendrin, is the most prevalent mutation in East Asia, resulting in DFNB4, an autosomal recessive type of genetic hearing loss. Although the main pathological mechanism of H723R was identified as a protein-folding defect in pendrin, there is still no curative treatment for associated hearing loss. Here, we show that H723R-pendrin expression and activity are rescued by activation of the chaperonin DNAJC14. In vitro, DNAJC14 was activated via Japanese encephalitis virus (JEV) inoculation, and toxin-attenuated JEV rescued the surface expression and anion exchange activity of H723R-pendrin. Human H723Rpendrin transgenic mice (hH723R Tg) were established in a mouse slc26a4 knockout background, in which only hH723Rpendrin was expressed in the inner ear (Pax2-Cre dependent) to mimic human DFNB4 pathology. Crossing hH723R Tg with DNAJC14-overexpressing mice resulted in reduced cochlear hydrops and more preserved outer hair cells in the cochlea compared to those in hH723R Tg mice. Furthermore, the stria vascularis and spiral ligament were thicker and KCNJ10 expression was increased with DNAJC14 overexpression; however, hearing function and enlarged endolymphatic hydrops were not recovered. These results indicate that DNAJC14 overexpression ameliorates the cochlear degeneration caused by misfolded pendrin and might be a potential therapeutic target for DFNB4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.