Targeted cell delivery by a magnetically actuated microrobot with a porous structure is a promising technique to enhance the low targeting efficiency of mesenchymal stem cell (MSC) in tissue regeneration. However, the relevant research performed to date is only in its proof-of-concept stage. To use the microrobot in a clinical stage, biocompatibility and biodegradation materials should be considered in the microrobot, and its efficacy needs to be verified using an in vivo model. In this study, we propose a human adipose–derived MSC–based medical microrobot system for knee cartilage regeneration and present an in vivo trial to verify the efficacy of the microrobot using the cartilage defect model. The microrobot system consists of a microrobot body capable of supporting MSCs, an electromagnetic actuation system for three-dimensional targeting of the microrobot, and a magnet for fixation of the microrobot to the damaged cartilage. Each component was designed and fabricated considering the accessibility of the patient and medical staff, as well as clinical safety. The efficacy of the microrobot system was then assessed in the cartilage defect model of rabbit knee with the aim to obtain clinical trial approval.
Nanorobots are safe and exhibit powerful functionalities, including delivery, therapy, and diagnosis. Therefore, they are in high demand for the development of new cancer therapies. Although many studies have contributed to the progressive development of the nanorobot system for anticancer drug delivery, these systems still face some critical limitations, such as potentially toxic materials in the nanorobots, unreasonable sizes for passive targeting, and the lack of several essential functions of the nanorobot for anticancer drug delivery including sensing, active targeting, controlling drug release, and sufficient drug loading capacity. Here, we developed a multifunctional nanorobot system capable of precise magnetic control, sufficient drug loading for chemotherapy, light-triggered controlled drug release, light absorption for photothermal therapy, enhanced magnetic resonance imaging, and tumor sensing. The developed nanorobot system exhibits an in vitro synergetic antitumor effect of photothermal therapy and chemotherapy and outstanding tumor-targeting efficiency in both in vitro and in vivo environments. The results of this study encourage further explorations of an efficient active drug delivery system for cancer treatment and the development of nanorobot systems for other biomedical applications.
Targeted drug delivery using a microrobot is a promising technique capable of overcoming the limitations of conventional chemotherapy that relies on body circulation. However, most studies of microrobots used for drug delivery have only demonstrated simple mobility rather than precise targeting methods and prove the possibility of biodegradation of implanted microrobots after drug delivery. In this study, magnetically guided self‐rolled microrobot that enables autonomous navigation‐based targeted drug delivery, real‐time X‐ray imaging, and microrobot retrieval is proposed. The microrobot, composed of a self‐rolled body that is printed using focused light and a surface with magnetic nanoparticles attached, demonstrates the loading of doxorubicin and an X‐ray contrast agent for cancer therapy and X‐ray imaging. The microrobot is precisely mobilized to the lesion site through automated targeting using magnetic field control of an electromagnetic actuation system under real‐time X‐ray imaging. The photothermal effect using near‐infrared light reveals rapid drug release of the microrobot located at the lesion site. After drug delivery, the microrobot is recovered without potential toxicity by implantation or degradation using a magnetic‐field‐switchable coiled catheter. This microrobotic approach using automated control method of the therapeutic agents‐loaded microrobot has potential use in precise localized drug delivery systems.
We described a magnetic chitosan microscaffold tailored for applications requiring high biocompatibility, biodegradability, and monitoring by real-time imaging. Such magnetic microscaffolds exhibit adjustable pores and sizes depending on the target application and provide various functions such as magnetic actuation and enhanced cell adhesion using biomaterial-based magnetic particles. Subsequently, we fabricated the magnetic chitosan microscaffolds with optimized shape and pore properties to specific target diseases. As a versatile tool, the capability of the developed microscaffold was demonstrated through in vitro laboratory tasks and in vivo therapeutic applications for liver cancer therapy and knee cartilage regeneration. We anticipate that the optimal design and fabrication of the presented microscaffold will advance the technology of biopolymer-based microscaffolds and micro/nanorobots.
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.