A complex link between cell-wall recycling/repair and the manifestation of resistance to β-lactam antibiotics in many Enterobacteriaceae and Pseudomonas aeruginosa exists. This process is mediated by specific cell-wall-derived muropeptide products. These muropeptides are internalized into the cytoplasm and bind to the transcriptional regulator AmpR, which controls the cytoplasmic events that lead to expression of β-lactamase, an antibiotic-resistance determinant. The effector-binding domain (EBD) of AmpR was purified to homogeneity. We document that the EBD exists exclusively as a dimer even at a concentration as low as 1 μM. The EBD binds to the suppressor ligand UDP-N-acetyl-β-D-muramyl-L-Ala-γ-D-Glu-meso-DAP-D-Ala-D-Ala (4) and binds to two activator muropeptides, N-acetyl-β-D-glucosamine-(1–4)-1,6-anhydro-N-acetyl-β-D-muramyl-L-Ala-γ-D-Glu-meso-DAP-D-Ala-D-Ala (1c) and 1,6-anhydro-N-acetyl-β-D-muramyl-L-Ala-γ-D-Glu-meso-DAP-D-Ala-D-Ala (2c) as assessed by non-denaturing mass spectrometry. The EBD does not bind to 1,6-anhydro-N-acetyl-β-D-muramyl-L-Ala-γ-D-Glu-meso-DAP (2a). This binding selectivity revises the dogma in the field. The crystal structure of the EBD dimer was solved to 2.2 Å resolution. The EBD crystallizes in a “closed” conformation, in contrast to the “open” structure required to bind the muropeptides. Structural issues of this ligand recognition are addressed by molecular dynamics simulations, which reveal significant differences among the complexes with the effector molecules.
Lytic transglycosylases (LTs) catalyze the non-hydrolytic cleavage of the bacterial cell wall by an intramolecular transacetalization reaction. This reaction is critically and broadly important in modifications of the bacterial cell wall in the course of its biosynthesis, recycling, manifestation of virulence, insertion of structural entities such as the flagellum and the pili, among others. The first QM/MM analysis of the mechanism of reaction of an LT, that for the Escherichia coli MltE, is undertaken. The study reveals a conformational itinerary consistent with an oxocarbenium-like transition state, characterized by a pivotal role for the active-site glutamic acid in proton transfer. Notably, an oxazolinium intermediate, as a potential intermediate, is absent. Rather, substrate-assisted catalysis is observed through a favorable dipole provided by the N-acetyl carbonyl group of MurNAc saccharide. This interaction stabilizes the incipient positive charge development in the transition state. This mechanism coincides with near-synchronous acetal cleavage and acetal formation.
We have produced draft whole-genome sequences for two bacterial strains reported to produce the bulgecins as well as NRPS-derived monobactam β-lactam antibiotics. We propose classification of ATCC 31363 as Paraburkholderia acidophila. We further reaffirm that ATCC 31433 (Burkholderia ubonensis subsp. mesacidophila) is a taxonomically distinct producer of bulgecins with notable gene regions shared with Paraburkholderia acidophila. We use RAST multiple-gene comparison and MASH distancing with published genomes to order the draft contigs and identify unique gene regions for characterization. Forty-eight natural-product gene clusters are presented from PATRIC (RASTtk) and antiSMASH annotations. We present evidence that the 10 genes that follow the sulfazecin and isosulfazecin pathways in both species are likely involved in bulgecin A biosynthesis.
SUMMARY Bacteria grow and divide without loss of cellular integrity. This accomplishment is notable, as a key component of their cell envelope is a surrounding glycopeptide polymer. In Gram-negative bacteria this polymer—the peptidoglycan—grows by the difference between concurrent synthesis and degradation. The regulation of the enzymatic ensemble for these activities is poorly understood. We report herein the structural basis for the control of one such enzyme, the lytic transglycosylase MltF of Pseudomonas aeruginosa. Its structure comprises two modules: an ABC-transporter-like regulatory module and a catalytic module. Occupancy of the regulatory module by peptidoglycan-derived muropeptides effects a dramatic and long distance (40 Å) conformational change, occurring over the entire protein structure, to open its active site for catalysis. This discovery of the molecular basis for the allosteric control of MltF catalysis is foundational to further study of MltF within the complex enzymatic orchestration of the dynamic peptidoglycan.
Vandetanib, a multi-kinase inhibitor used for the treatment of various cancers, has been reported to induce several adverse cardiac effects. However, the underlying mechanisms of vandetanib-induced cardiotoxicity are unclear. This study aimed to investigate the mechanism of vandetanib-induced cardiotoxicity using intracellular electrophysiological recordings on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), rabbit Purkinje fibers, and HEK293 cells transiently expressing human ether-a-go-go-related gene (hERG; the rapidly activating delayed rectifier K+ channel, IKr), KCNQ1/KCNE1 (the slowly activating delayed rectifier K+ current, IKs), KCNJ2 (the inwardly rectifying K+ current, IK1) or SCN5A (the inward Na+ current, INa). Purkinje fiber assays and ion channel studies showed that vandetanib at concentrations of 1 and 3 μM inhibited the hERG currents and prolonged the action potential duration. Alanine scanning and in silico hERG docking studies demonstrated that Y652 and F656 in the hERG S6 domain play critical roles in vandetanib binding. In hiPSC-CMs, vandetanib markedly reduced the maximum rate of depolarization during the AP upstroke. Ion channel studies revealed that hiPSC-CMs were more sensitive to inhibition of the INa by vandetanib than in a heterogeneously expressed HEK293 cell model, consistent with the changes in the AP parameters of hiPSC-CMs. The subclasses of Class I antiarrhythmic drugs inhibited INa currents in a dose-dependent manner in hiPSC-CMs and SCN5A-encoded HEK293 cells. The inhibitory potency of vandetanib for INa was much higher in hiPSC-CMs (IC50: 2.72 μM) than in HEK293 cells (IC50: 36.63 μM). These data suggest that AP and INa assays using hiPSC-CMs are useful electrophysiological models for prediction of drug-induced cardiotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.