<b><i>Background:</i></b> The usage of multichannel brain MRI coils, which have several advantages over single-channel brain coils used for stereotactic radiosurgery (SRS), requires a frame adapter device to fit the frames inside the multichannel brain coils. However, such a frame adapter has not been developed until now. <b><i>Objective:</i></b> to develop an SRS frame adapter for multichannel MRI coils and verify the geometrical accuracy and signal-to-noise ratio (SNR) of the MR images obtained using multichannel MRI coils. <b><i>Methods:</i></b> We fabricated an SRS frame adapter for a 48-channel MRI coil using a three-dimensional (3D) printer. Furthermore, we obtained phantom and human-brain MR images with a 3.0 Tesla MRI scanner using multi- and single-channel coils. Computed tomography (CT) phantom images were also obtained as reference. We compared the coordinate errors of the multi- and single-channel coils to evaluate the geometrical accuracy. Two neurosurgeons measured the coordinates. In addition, we compared the SNR differences between multi- and single-channel coils using the T1- and T2-weighted brain images. <b><i>Results:</i></b> For the CT coordinate measurements, the correlation coefficient <i>r</i> = 1 and <i>p</i> < 0.001 with respect to the 3 axes (Δ<i>x</i>, Δ<i>y</i>, and Δ<i>z</i>) and 3D errors (Δ<i>r</i>) showed no interpersonal differences between the 2 neurosurgeons. The results obtained using the T1-weighted images showed that a multichannel coil had smaller coordinate errors in Δ<i>x</i>, Δ<i>y</i>, Δ<i>z</i>, and Δ<i>r</i> than that observed in case of a single-channel coil (<i>p</i> < 0.001). In case of the SNR measurements, most of the brain areas showed higher SNRs when using a multichannel coil compared with that observed when using a single-channel coil in the T1- and T2-weighted images. <b><i>Conclusion:</i></b> Compared with single-channel coils, the use of multichannel MRI coils with a newly developed frame adapter is expected to ensure successful SRS treatments with improved geometrical accuracy and SNR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.