Hot electronic dynamics in lead sulfide nanocrystals is interrogated by degenerate pump-probe spectroscopy with 20-25 fs pulses over a broad frequency range around three times the nanocrystal band gap. For each nanocrystal diameter, an initial reduction in absorption is seen only at the peak of the quantum confined E1 transition, while increased absorption is seen at all other wavelengths. The signals from the nanocrystals are approximately 300 times weaker than expected for a two-level system with the same absorbance and molar extinction coefficient and are weaker near time zero. These results appear to be inconsistent with quantum confinement of the initially excited high energy states. Arguments based on carrier scattering length, the wave packet size supported by the band structure, and effective mass are advanced to support the hypothesis that, for many direct-gap semiconductor quantum dots, the carrier dynamics at three times the band gap is localized on the 1-2 nm length scale and essentially bulklike except for frequent collisions with the surface.
Femtosecond two-dimensional Fourier transform spectroscopy is used to determine the static bandgap inhomogeneity of a colloidal quantum dot ensemble. The excited states of quantum dots absorb light, so their absorptive two-dimensional (2D) spectra will typically have positive and negative peaks. It is shown that the absorption bandgap inhomogeneity is robustly determined by the slope of the nodal line separating positive and negative peaks in the 2D spectrum around the bandgap transition; this nodal line slope is independent of excited state parameters not known from the absorption and emission spectra. The absorption bandgap inhomogeneity is compared to a size and shape distribution determined by electron microscopy. The electron microscopy images are analyzed using new 2D histograms that correlate major and minor image projections to reveal elongated nanocrystals, a conclusion supported by grazing incidence small-angle X-ray scattering and high-resolution transmission electron microscopy. The absorption bandgap inhomogeneity quantitatively agrees with the bandgap variations calculated from the size and shape distribution, placing upper bounds on any surface contributions.
The absolute femtosecond pump-probe signal strength of deprotonated fluorescein in basic methanol is measured. Calculations of the absolute pump-probe signal based on the steady-state absorption and emission spectrum that use only independently measured experimental parameters are carried out. The calculation of the pump-probe signal strength assumes the pump and probe fields are both weak and includes the following factors: the transverse spatial profile of the laser beams; the pulse spectra; attenuation of the propagating pulses with depth in the sample; the anisotropic transition probability for polarized light; and time-dependent electronic population relaxation. After vibrational and solvent relaxation are complete, the calculation matches the measurement to within 10% error without any adjustable parameters. This demonstrates quantitative measurement of absolute excited state population.
Four-level two-dimensional (2D) Fourier transform relaxation spectra are simulated with response functions for a chromophore pair in the exponential relaxation (optical Bloch model) limit. The parameters in this study are chosen to model coupled carbonyl stretching vibrations. As long as coherence persists, every peak in the real 2D spectra has a partially mixed absorptive/dispersive ("phase-twisted") shape because the nonlinear signals are not symmetric with respect to interchange of the first two pulses. This asymmetry in 2D relaxation spectra arises from coherence between singly excited states and a red shift of the doubly excited state. Coherence between the singly excited states causes oscillation of the 2D spectra and the associated spectrally resolved pump-probe (SRPP) transients at the quantum beat frequency. Projecting the phase-twisted nature of the 2D peaks onto the detection frequency axis, the SRPP peaks are also asymmetric about their maximum when not at maximum or minimum amplitude. Three-dimensional Fourier transform (3DFT) methods are used to simulate absorption/dispersion and beam geometry distortions of the multilevel 2D spectra with cross peaks. The distortions can be understood by consideration of their effects on individual coherence pathways that contribute to peaks in the 2D spectra. The beam geometry distortion explains some unequal cross peak amplitudes previously observed experimentally by Khalil et al. (J. Chem. Phys. 2004, 121, 362). A representation of 2D spectra that reduces beam geometry distortion is presented. If the transformation to correct for beam geometry distortion is combined with the transformations that correct absorptive/dispersive propagation distortions (J. Chem. Phys. 2007, 126, 044511), the recovered 2D spectrum matches the ideal 2D spectrum after all coherence is destroyed. In the presence of coherence, the new representation reduces the error in the distorted 2D spectrum by a factor of 4 for practical 2D-IR experimental conditions.
Absolute molecular number concentration and extinction coefficient are simultaneously determined from linear and nonlinear spectroscopic measurements. This method is based on measurements of absolute femtosecond pump-probe signals. Accounting for pulse propagation, we present a closed form expression for molecular number concentration in terms of absorbance, fluorescence, absolute pump-probe signal, and laser pulse parameters (pulse energy, spectrum, and spatial intensity profile); all quantities are measured optically. As in gravimetric and coulometric determinations of concentration, no standard samples are needed for calibration. The extinction coefficient can then be determined from the absorbance spectrum and the concentration. For fluorescein in basic methanol, the optically determined molar concentrations and extinction coefficients match gravimetric determinations to within 10% for concentrations from 0.032 to 0.540 mM, corresponding to absorbance from 0.06 to 1. In principle, this photonumeric method is extensible to transient chemical species for which other methods are not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.