Lithobates catesbeianus (American bullfrog), known to be one of the notorious invasive species, was introduced to South Korea and has proliferated in the Korean natural environment for the past 25 years. The ecological impact caused by the species is well known, and several management decisions have been implemented to cull its population. However, the effectiveness of past control decisions is largely unknown. We built a population dynamics model for L. catesbeianus in the Onseok reservoir, South Korea, using STELLA architect software. The population model was based on the demographics and ecological process of the species developing through several life stages, with respective parameters for survivorship and carrying capacity. Control scenarios with varying intensities were simulated to evaluate their effectiveness. The limitations of isolated control methods and the importance of integrated management are shown in our results. The population of the American bullfrog in the reservoir was reduced to a manageable level under intensive control of the tadpole stage, using three sets of double fyke nets and 80% direct removal of juvenile and adult stages. According to our results, integrated, intensive, and continuous control is essential for managing the invasive American bullfrog population. Finally, our modeling approach can assist in determining the control intensity to improve the efficiency of measures against L. catesbeianus.
African swine fever (ASF) is a viral hemorrhagic fever fatal to animals of the Suidae family. It has spread from Africa to Europe and Asia, causing significant damage to wildlife and domesticated pig production. Since the first confirmed case in South Korea in September 2019, the number of infected wild boars has continued to increase, despite quarantine fences and hunting operations. Hence, new strategies are needed for the effective control of ASF. We developed an agent-based model (ABM) to estimate the ASF expansion area and the efficacy of infection control strategies. In addition, we simulated the agents’ (wild boars) behavior and daily movement range based on their ecological and behavioral characteristics, by applying annual hunting scenarios from past three years (2019.09–2022.08). The results of the simulation based on the annual changes in the number of infected agents and the ASF expansion area showed that the higher the hunting intensity, the smaller the expansion area (24,987 km2 at 0% vs. 3533 km2 at 70%); a hunting intensity exceeding 70% minimally affected the expansion area. A complete removal of agents during the simulation period was shown to be possible. In conclusion, an annual hunting intensity of 70% should be maintained to effectively control ASF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.