We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.
We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on conductive carbon papers and used as excellent electrochemical capacitors. The carbon nanotubes were synthesized with use of an Al/Fe catalyst via water-assisted chemical vapor deposition. They grew as fast as ∼100 μm/min and approximately 70% of them had double walls with an average diameter of ∼6 nm. Interestingly, the carbon nanotube forest showed microscale patterns defined by the structure of underlying carbon papers. The nanotubes were attached well to the carbon papers and maintained their adhesion under mild ultrasonication in solution. Owing to the direct integration, naturally patterned structure, and good alignment, the carbon nanotubes showed excellent performance as supercapacitors. In aqueous 1 M H2SO4 solution, specific capacitance, energy, and power measured at the current density of 20 A/g were ca. 200 F/g, 20 Wh/kg, and 40 kW/kg, respectively. A specific energy of >100 Wh/kg was achieved when organic electrolyte was used. Demonstrated facile and direct integration of carbon nanotubes on conductive substrates and their excellent electrochemical properties may hold great promise for electrochemical energy storage applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.