Epoetin zeta is therapeutically equivalent to epoetin alfa in the maintenance of target Hb levels in patients with renal anaemia. No unexpected AEs were seen.
Background: Although renal tubular epithelium has a great capacity for repair it has been suggested that the administration of mesenchymal stem cells may accelerate the recovery following severe ischemic injury. Methods: Here we analyzed the survival rate and organ distribution of transplanted mesenchymal stem cells as well as their contribution to kidney regeneration after ischemic renal injury using functional tests, histological examination as well as quantitative real-time PCR. Results: Intravenously injected stem cells were mainly trapped in lungs and liver. One hour after injection, less than 1% of the injected stem cells could be detected in the injured kidneys. These cells disappeared within the first few days and did not replace renal epithelial cells precluding substantial transdifferentiation. To clarify whether reinforced stem cell delivery might promote sustained survival or conversion to tubular epithelia, stem cells were directly injected into the injured kidneys. Although these grafted cells also did not show sustained survival or contribute to structural renal repair, stem cell injection was associated with a significant but transient initial decrease in serum creatinine. Conclusion: These data suggest that mesenchymal stem cells do not significantly contribute to epithelial renewal after ischemic injury, promoting the idea that the major impact of cell-based therapy for acute kidney injury may result from paracrine or endocrine effects unrelated to stem cell transdifferentiation.
We confirm the UMOD gene as the disease-causing gene for MCKD2. All three novel mutations were found in the fourth exon of UMOD, in which all mutations except one (this is located in the neighboring exon 5) published so far are located. These data point to a specific role of exon 4 encoded sequence of UMOD in the generation of the MCKD2 renal phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.