We report the spatial imaging of the photon transition probability of a single molecule at submolecular resolution. Photon imaging of a ringlike pattern is further resolved as two orthogonal vibronic transitions after incorporating spectral selectivity. A theoretical model and the calculated intensity images reveal that the transition probability is dominated by the symmetry of the positions of the tip and the transition dipole moment. This imaging technique enables the probing of the electronic and optical properties in the interior of a single molecule.
Scanning tunneling potentiometry (STP) is a powerful tool to analyze the conductance through thin conducting layers with lateral resolution in the nanometer range. In this work, we show how a commercial ultrahigh vacuum multiprobe system, equipped with four independent tips, can be used to perform STP experiments. Two tips are gently pushed into the surface applying a lateral current through the layer of interest. Simultaneously, the topography and the potential distribution across the metal film are measured with a third tip. The signal-to-noise ratio of the potentiometry signal may be enhanced by using a fourth tip, providing a reference potential in close vicinity of the studied area. Two different examples are presented. For epitaxial (111) oriented Bi films, grown on a Si(100)-(2 x 1) surface, an almost constant gradient of the potential as well as potential drops at individual Bi-domain boundaries were observed. On the surface of the Si(111)(3 x 3)-Ag superstructure the potential variation at individual monoatomic steps could be precisely resolved.
If a current of electrons flows through a normal conductor (in contrast to a superconductor), it is impeded by local scattering at defects as well as phonon scattering. Both effects contribute to the voltage drop observed for a macroscopic complex system as described by Ohm's law. Although this concept is well established, it has not yet been measured around individual defects on the atomic scale. We have measured the voltage drop at a monatomic step in real space by restricting the current to a surface layer. For the Si(111)-( [see text]3 x [see text]3)-Ag surface a monotonous transition with a width below 1 nm was found. A numerical analysis of the data maps the current flow through the complex network and the interplay between defect-free terraces and monatomic steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.