The capsid protein (CA) (p24) of human immunodeficiency virus (HIV) type 1 expressed in Escherichia coli and purified to >90%o homogeneity was used to examine assembly in vitro and to probe the nature of interactions involved in the formation of capsid structures. The protein was detected in dimeric and oligomeric forms as indicated by molecular size measurements by gel filtration column chromatography, sedimentation through sucrose, and nondenaturing gel electrophoresis. Chemical cross-linking of CA molecules was observed with several homobifunctional reagents. Oligomer size was dependent on cross-linker concentration and exhibited a nonrandom pattern in which dimers and tetramers were more abundant than trimers and pentamers. Oligomers as large as dodecamers were detected in native polyacrylamide gels. These were stable in solutions of high ionic strength or in the presence of nonionic detergent, indicating that strong interactions were involved in oligomer stabilization. Limited tryptic digestion converted the putative dodecamers to octamers, suggesting that a region involved in CA protein multimerization was exposed in the structure. This region was mapped to the central portion of the protein. The recombinant CA proteins assembled in vitro into long rodlike structures and were disassembled into small irregular spheres by alterations in ionic strength and pH. The observation that assembly and disassembly of purified HIV type 1 CA protein can be induced in vitro suggests an approach for identifying possible control mechanisms involved in HIV viral core assembly.
We expressed the gag and proteinase regions of human immunodeficiency virus (HIV) type 1 by transcription and translation in vitro. A synthetic RNA spanning the gag and pro domains gave primarily the unprocessed capsid precursor pr53. Efficient cleavage of this precursor was observed when the gag and pro domains were placed in the same translational reading frame, yielding equimolar amounts of the gag protein and of proteinase (PR). Expression of HIV type 1 PR in Escherichia coli as a fusion protein gave rapid autocatalytic processing to an HIV-specific protein of approximately 11 kilodaltons. HIV PR generated in E. coli specifically induced cleavage of the HIV capsid precursor, whereas deletion of the carboxy-terminal 17 amino acids of the proteinase rendered it inactive. Inhibitor studies showed that the enzyme was insensitive to inhibitors of serine and cysteine proteinases and metalloproteinases and was inhibited only by a very high concentration (1 mM) of pepstatin A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.