The variability in coat protein gene sequences of Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) that naturally infect orchids worldwide was investigated. Samples were collected from Korea, Singapore and Taiwan. The sequence data were compared with available published coat protein gene sequences of CymMV and ORSV, including those from Japan and Thailand. Among CymMV isolates, the homology was 89.1%-99.7% and 93.2%-100% at the nucleotide and amino acid levels, respectively. Among the ORSV isolates, the homology was 95.5%-100% and 93%-100% at the nucleotide and amino acid levels, respectively. No particular region of variability could be defined in either of the viruses. In deduced amino acid sequence, the N-terminal was more conserved than the C-terminal in both CymMV and ORSV. By comparing all sequences determined in this study and those that are published in the GenBank databases, we did not find clustering based on geographical distribution or sequence identity. Such high sequence conservation suggests that both CymMV and ORSV coat protein genes are suitable candidates to provide resistance to orchids cultivated in different geographical locations.
A Taiwan isolate of Cymbidium mosaic virus (CymMV-CS) was isolated from infected Cymbidium sinesis Willd. The cDNA of the capsid protein (CP) gene was synthesized and sequenced. Alignment of this CP gene with other reported CPs revealed homologies of 92-98% at the nucleotide level and 98-99% at the amino acid level. To generate virus-resistant varieties, the CymMV-CS CP gene was transformed into Dendrobium protocorms through particle bombardment. Transformants were selected on medium supplemented with 20 mg/L hygromycin and the presence of the transgene was confirmed by polymerase chain reaction, Southern, Northern and Western blot analyses. Transgenic Dendrobium harboring the CymMV CP gene expressed a very low level of virus accumulation four months post-inoculation with CymMV, as detected by ELISA. The transgenic plants exhibited much milder symptoms than the non-transgenic plants upon challenge with CymMV virions.
In May of 2006, samples from tomato plants (Solanum lycopersicum cv. Known-you 301) exhibiting necrotic symptoms on stems, petioles, and leaves were collected from Chiayi County, Taiwan. Double-antibody sandwich-ELISAs were performed using Cucumber mosaic virus, Tomato mosaic virus, Potato virus Y, Watermelon silver mottle virus, and Chilli veinal mottle virus (ChiVMV) polyclonal antibodies. Three of eight samples reacted with antibodies against ChiVMV but not with the others. Using the potyvirus degenerate primers (Hrp 5/Pot 1) (2), an expected 1.5-kb DNA fragment including the 3′-end of the NIb gene, the complete coat protein (CP) gene, and the 3′-nontranslatable region of the virus was amplified from total RNA isolated from these three samples by reverse transcription (RT)-PCR. A homology search in GenBank indicated that the new tomato-infecting virus in Taiwan belongs to Pepper veinal mottle virus (PVMV) since they shared >90% amino acid identity in the CP gene. A virus culture (Tom1) isolated from one of the diseased tomatoes was then established in Chenopodium quinoa and Nicotiana benthamiana and the CP gene was amplified and sequenced (GenBank Accession No. EU719647). Comparisons of the 807-nt CP gene with those of five PVMV isolates available in GenBank showed 81.5 to 93.1% nucleotide and 90.0 to 97.8% amino acid identity. Tom1 induced irregular necrotic lesions on stems, petioles, and leaves of tomato while inducing only mild mottle symptoms on pepper. Serological cross reaction between ChiVMV and PVMV has been observed previously (1,3) and also found in this study. To differentiate these two potyviruses by RT-PCR, primer pair CPVMVup/dw (5′-TATTC(T/C)TCAGTGTGG(A/T/C)T(T/C)CCACCAT and 5′-(T/C)C(A/T)C(A/T)(A/T/G)(A/T)AA(A/G)CCATAA(A/C)(A/C)ATA(A/G)T(T/C)T) was designed on the basis of the comparison of the CP gene and the 3′-nontranslatable region of the PVMV and ChiVMV. DNA fragments of 171 and 259 bp are expected to be amplified from ChiVMV and PVMV, respectively, by RT-PCR with primers CPVMVup/dw. In a field survey done in 2006, samples from diseased peppers (Capsicum annuum) that reacted with the polyclonal antibodies against ChiVMV were further identified by RT-PCR with primers CPVMVup/dw, indicating that both ChiVMV and PVMV infected pepper crops (Capsicum spp.) in Taiwan. A pepper isolate (Pep1) of PVMV was obtained from Nantou County through three times of single lesion passages on C. quinoa and then propagated on N. benthamiana. The CP gene of Pep1 was amplified and sequenced (GenBank Accession No. EU719646) and found to share 99.1% nucleotide and 100% amino acid identity with that of Tom1. Pep1 caused mild mottle symptoms on leaves of both tomato and pepper. To our knowledge, this is the first report of the presence of PVMV in Taiwan as well as in East Asia. References: (1) B. Moury et al. Phytopathology 95:227, 2005. (2) S. S. Pappu et al. Plant Dis. 82:1121, 1998. (3) W. S. Tsai et al. Plant Pathol. 58:408, 2008.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.