We present an LSTM approach to deletion-based sentence compression where the task is to translate a sentence into a sequence of zeros and ones, corresponding to token deletion decisions. We demonstrate that even the most basic version of the system, which is given no syntactic information (no PoS or NE tags, or dependencies) or desired compression length, performs surprisingly well: around 30% of the compressions from a large test set could be regenerated. We compare the LSTM system with a competitive baseline which is trained on the same amount of data but is additionally provided with all kinds of linguistic features. In an experiment with human raters the LSTMbased model outperforms the baseline achieving 4.5 in readability and 3.8 in informativeness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.