The past decade transformed our observational understanding of energetic particle processes in near‐Earth space. An unprecedented suite of observational systems was in operation including the Van Allen Probes, Arase, Magnetospheric Multiscale, Time History of Events and Macroscale Interactions during Substorms, Cluster, GPS, GOES, and Los Alamos National Laboratory‐GEO magnetospheric missions. They were supported by conjugate low‐altitude measurements on spacecraft, balloons, and ground‐based arrays. Together, these significantly improved our ability to determine and quantify the mechanisms that control the buildup and subsequent variability of energetic particle intensities in the inner magnetosphere. The high‐quality data from National Aeronautics and Space Administration's Van Allen Probes are the most comprehensive in situ measurements ever taken in the near‐Earth space radiation environment. These observations, coupled with recent advances in radiation belt theory and modeling, including dramatic increases in computational power, have ushered in a new era, perhaps a “golden era,” in radiation belt research. We have edited a Journal of Geophysical Research: Space Science Special Collection dedicated to Particle Dynamics in the Earth's Radiation Belts in which we gather the most recent scientific findings and understanding of this important region of geospace. This collection includes the results presented at the American Geophysical Union Chapman International Conference in Cascais, Portugal (March 2018) and many other recent and relevant contributions. The present article introduces and review the context, current research, and main questions that motivate modern radiation belt research divided into the following topics: (1) particle acceleration and transport, (2) particle loss, (3) the role of nonlinear processes, (4) new radiation belt modeling capabilities and the quantification of model uncertainties, and (5) laboratory plasma experiments.
Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising tone chorus elements propagating from a near equatorial (Van Allen Probes) to an off-equatorial (Arase) satellite. The chorus is observed first on the more equatorial satellite and is found to be more oblique and significantly attenuated at the off-equatorial satellite. This is consistent with the prevailing theory of chorus propagation and with the idea that chorus must propagate from the equatorial source region to higher latitudes. Ray tracing of chorus at the observed frequencies confirms that these elements could be generated parallel to the field at the equator, and propagate through the medium unducted to Van Allen Probes A and then to Arase with the observed time delay, and have the observed obliquity and intensity at each satellite.
Observations from Magnetospheric MultiScale (~8 Re ) and Van Allen Probes (~5 and 4 Re ) show that the initial dayside response to a small interplanetary shock is a double‐peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated E × B flow is radially inward. The shock compressed the magnetopause to inside 8 Re , as observed by Magnetospheric MultiScale (MMS), with a speed that is comparable to the E × B flow. The magnetopause speed and the E × B speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES‐13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF waves also were seen. These observations demonstrate that even very weak shocks can have significant impact on the radiation belts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.