Pulsed power driven metallic wire-array Z pinches are the most powerful and efficient laboratory x-ray sources. Furthermore, under certain conditions the soft x-ray energy radiated in a 5 ns pulse at stagnation can exceed the estimated kinetic energy of the radial implosion phase by a factor of 3 to 4. A theoretical model is developed here to explain this, allowing the rapid conversion of magnetic energy to a very high ion temperature plasma through the generation of fine scale, fast-growing m = 0 interchange MHD instabilities at stagnation. These saturate nonlinearly and provide associated ion viscous heating. Next the ion energy is transferred by equipartition to the electrons and thus to soft x-ray radiation. Recent time-resolved iron spectra at Sandia confirm an ion temperature Ti of over 200 keV (2 x 10(9) degrees), as predicted by theory. These are believed to be record temperatures for a magnetically confined plasma.
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of intormation, including suggestions for reducing this burden to Department ot Defense, Washington Headquarters Services, Directorate for Information 14. ABSTRACT A deuterium gas-puff load imploded by a multi-MA current driver from a large initial diameter could be a powerful source of fusion neutrons, a plasma neutron source. Unlike the beam-target neutrons produced in Z-pinch plasmas in the 1950s and deuterium-fiber experiments in the 1980s, the neutrons generated in deuterium gas-puffs, with current levels achieved in recent experiments on the SNL Z facility, could contain a substantial fraction of thermonuclear origin. For recent deuterium gas-puff shots ont Z, our analytical estimates and I-D and 2-D simulations predict thermal neutron yields -5 x 1013, in fair agreement with the yields measured on Z. It is demonstrated that the hypothesis of a beam-target origin of the observed fusion neutrons implies a very high Z-pinch-driver-to-fast-ions energy transfer efficiency, 5 to 10%, which would make a multi-MA deuterium Z-pinch the most efficient light-ion accelerator. No matter what mechanism is eventually determined to be responsible for generating fusion neutrons in deuterium gas-puff shots on Z, the neutron yield is shown to scale as y~ I_4 where Im is the peak current of the pinch. Theoretical estimates and numerical modeling of deuterium gas-puff implosions demonstrate that the yields of thermonuclear fusion neutrons that can be produced on ZR and the next generation machines are sufficiently high to make Plasma Neutron Sources (PNS) the most powerful, cost-and energy-efficient laboratory sources of 2.5 to 14 MeV fusion neutron, just like Plasma Radiation Sources (PRS) are the most powerful sources of soft and keV x-rays. In particular, the predicted neutron-producing capability of PNS driven by ZR and ZX accelerators, from -6 x 1016 to _ 1 0 18 matches the projected capability of the NIF laser at thermonuclear energy gains of 1 and 20, respectively.
The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state (EOS) experiments at pressures up to 10Mbar in aluminum. Development of multidimensional radiation-magnetohydrodynamic codes, coupled with more accurate material models (e.g., quantum molecular dynamics calculations with density functional theory), has produced synergy between validating the simulations and guiding the experiments. Z is now routinely used to drive ICF capsule implosions (focusing on implosion symmetry and neutron production) and to perform HEDP experiments (including radiation-driven hydrodynamic jets, EOS, phase transitions, strength of materials, and detailed behavior of z-pinch wire-array initiation and implosion). This research is performed in collaboration with many other groups from around the world. A five year project to enhance the capability and precision of Z, to be completed in 2007, will result in x-ray energies of nearly 3MJ at x-ray powers >300TW.
Experiments on the Z accelerator with deuterium gas puff implosions have produced up to 3.9 ϫ 10 13 ͑±20% ͒ neutrons at 2.34 MeV ͑±0.10 MeV͒. Experimentally, the mechanism for generating these neutrons has not been definitively identified through isotropy measurements, but activation diagnostics suggest multiple mechanisms may be responsible. One-, two-, and three-dimensional magnetohydrodynamic ͑MHD͒ calculations have indicated that thermonuclear outputs from Z could be expected to be in the ͑0.3-1.0͒ ϫ 10 14 range. X-ray diagnostics of plasma conditions, fielded to look at dopant materials in the deuterium, have shown that the stagnated deuterium plasma achieved electron temperatures of 2.2 keV and ion densities of 2 ϫ 10 20 cm −3 , in agreement with the MHD calculations.
Magnetically compressed plasmas initiated by a double planar wire array (DPWA) are efficient radiation sources. The two rows in a DPWA implode independently and then merge together at stagnation producing soft x-ray yields and powers of up to 11.5kJ∕cm and more than 0.4TW∕cm, higher than other planar arrays or low wire-number cylindrical arrays on the 1MA Zebra generator. DPWA, where precursors form in two stages, produce a shaped radiation pulse and radiate more energy in the main burst than estimates of implosion kinetic energy. High radiation efficiency, compact size (as small as 3–5mm wide), and pulse shaping show that the DPWA is a potential candidate for ICF and radiation physics research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.