The geodesic acoustic mode (GAM) is a coherently oscillating zonal flow that may regulate turbulence in toroidal plasmas. Uniquely, the complete poloidal and toroidal structure of the magnetic component of the turbulence-driven GAM has been mapped in the TCV tokamak. Radially localized measurements of the fluctuating density, ECE radiative temperature and poloidal flow show that the GAM is a fully coherent, radially propagating wave. These observations are consistent with electrostatic, gyrokinetic simulations.
This work reports on the measurements of ion flux composition and ion energy distribution functions (IEDFs) at surfaces in contact with hydrogen plasmas induced by extreme ultraviolet (EUV) radiation. This special type of plasma is gaining interest from industries because of its appearance in extreme ultraviolet lithography tools, where it affects exposed surfaces. The studied plasma is induced in 5 Pa hydrogen gas by irradiating the gas with short (30 ns) pulses of EUV radiation (k ¼ 10-20 nm). Due to the low duty cycle (10-4), the plasma is highly transient. The composition and IEDF are measured using an energy resolved ion mass spectrometer. The total ion flux consists of H þ ; H þ 2 , and H þ 3. H þ 3 is the dominant ion as a result of the efficient conversion of H þ 2 to H þ 3 upon collision with background hydrogen molecules. The IEDFs of H þ 2 and H þ 3 appear similar, showing a broad distribution with a cutoff energy at approximately 8 eV. In contrast, the IEDF of H þ shows an energetic tail up to 18 eV. Most probably, the ions in this tail gain their energy during their creation process by photoionization and dissociative electron impact ionization.
Retarding field energy analyzers (RFEAs) are used routinely for the measurement of ion energy distribution functions. By contrast, their ability to measure ion flux densities has been considered unreliable because of lack of knowledge about the effective transmission of the RFEA grids. In this work, we simulate the ion trajectories through a three-gridded RFEA using the simulation software SIMION. Using idealized test cases, it is shown that at high ion energy (i.e., >100 eV) the transmission is equal to the optical transmission rather than the product of the individual grid transparencies. Below 20 eV, ion trajectories are strongly influenced by the electric fields in between the grids. In this region, grid alignment and ion focusing effects contribute to fluctuations in transmission with ion energy. Subsequently the model has been used to simulate the transmission and energy resolution of an experimental RFEA probe. Grid misalignments reduce the transmission fluctuations at low energy. The model predicts the minimum energy resolution, which has been confirmed experimentally by irradiating the probe with a beam of ions with a small energy bandwidth.
Energy distribution functions for ions from pulsed EUV-induced plasmas in low pressure N2-diluted H2 gas. Applied Physics Letters, 114(13), [133502].
A simple and selective new technique for atomic hydrogen flux measurements in a hydrogen plasma environment is introduced and demonstrated in this work. This technique works by measuring the etching rate of an amorphous carbon film and translating this to an incoming hydrogen radical flux through a well-defined carbon etch yield per radical. Ions present in the plasma environment have a much higher etch yield than radicals do. For that reason, suppression of the ion flux toward the carbon film is crucial to ensure that the observed carbon etch rate is dominated by atomic hydrogen etching. It is demonstrated that this can be achieved using a simple cylindrical pipe (hereinafter “chimney”) in which a bend is introduced to enforce ion–wall collisions, neutralizing the ions. The chimney is made out of Macor, a material with low catalytic surface activity, to preserve the incoming atomic hydrogen flux while effectively suppressing ions. Ultimately, the etching sensor is deployed in a radio frequency inductively coupled hydrogen plasma operated at low pressure (1–10 Pa). Atomic hydrogen fluxes are measured and compared with heat flux sensor and vacuum ultraviolet absorption spectroscopy measurements in the same setup. All sensors agreed within a factor 4 in the atomic hydrogen flux range 1019 to 1021 m−2 s−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.