In this immunocytochemical study, we used light and electron microscopic observations in combination with morphometry to analyze the processing of pro-opiomelanocortin (POMC) in melanotrope cells of the intermediate pituitary of Xenopus laevis adapted to either a white or a black background. An antiserum was raised against a synthetic peptide including the cleavage site between ACTH and beta-lipotropic hormone in Xenopus. Western blotting revealed that this antiserum recognizes only a 38-kD protein, the POMC prohormone, from extracts of Xenopus neurointermediate pituitary. Light immunocytochemistry showed differential immunostaining for anti-POMC compared to anti-alpha-MSH. Anti-POMC was predominantly found in the perinuclear region, whereas anti-alpha-MSH yielded staining throughout the cytoplasm. Immunogold double labeling revealed that electron-dense secretory granules (DGs) show high immunoreactivity for anti-POMC and low immunoreactivity for anti-alpha-MSH. Electron-lucent granules (LGs) are immunoreactive to anti-alpha-MSH only. Moderately electron-dense granules (MGs) revealed intermediate reactivity compared to DGs and LGs. Background light intensity has significant effects on the morphology and the immunoreactivity of the secretory granules. Black-adapted animals have 4.5 times as many DGs and MGs as white-adapted animals. In addition, the MGs in black animals show 42% more anti-alpha-MSH immunogold than the MGs in white animals. Together, these findings indicate that the three granule types represent subsequent stages in granule maturation. Adaptation to a black background stimulates the formation of young immature granules, while at the same time the processing rate during granule maturation increases.
The process of background adaptation in the toad Xenopus laevis is controlled by neurons in the suprachiasmatic nucleus (SC) that inhibit the release of alpha-melanophore-stimulating hormone from the neuroendocrine melanotrope cells in the pituitary gland. We have identified the structural and functional organization of different neuropeptide Y (NPY)-containing cell groups in the Xenopus SC in relation to background adaptation. A ventrolateral, a dorsomedial, and a caudal group were distinguished, differing in location as well as in number, size, and shape of their cells. They also show different degrees of NPY immunoreactivity in response to different background adaptation conditions. In situ hybridization using a Xenopus mRNA probe for the exocytosis protein DOC2 revealed that melanotrope cells of black-adapted animals have a much higher expression of DOC2-mRNA than white-adapted ones. This establishes that the degree of DOC2-mRNA expression is a good parameter to measure cellular secretory activity in Xenopus. We show that in the ventrolateral SC group, more NPY-positive neurons express DOC2-mRNA in white- than in black-adapted animals. In contrast, NPY-positive neurons in the dorsomedial group have a high secretory activity under the black-adaptation condition. We propose that in black-adapted animals, NPY-positive neurons in the ventrolateral group, known to inhibit the melanotrope cells in white-adapted animals synaptically, are inhibited by NPY-containing interneurons in the dorsmedial group. NPY-positive neurons in the caudal group have similar secretory dynamics as the dorsomedial NPY neurons, indicating that they also play a role in background adaptation, distinct from that exerted by the ventrolateral and dorsomedial group.
This review deals particularly with the recent literature on the structural and functional aspects of the retino-brain-pituitary system that controls the physiological process of background adaptation in the aquatic toad Xenopus laevis. Taking together the large amount of multidisciplinary data, a consistent picture emerges of a highly plastic system that efficiently responds to changes in the environmental light condition by releasing POMC-derived peptides, such as the peptide alpha-melanophore-stimulating hormone (alpha-MSH), into the circulation. This plasticity is exhibited by both the central nervous system and the pituitary pars intermedia, at the level of molecules, subcellular structures, synapses, and cells. Signal transduction in the pars intermedia of the pituitary gland of Xenopus laevis appears to be a complex event, involving various environmental factors (e.g., light and temperature) that act via distinct brain centres and neuronal messengers converging on the melanotrope cells. In the melanotropes, these messages are translated by specific receptors and second messenger systems, in particular via Ca(2+) oscillations, controlling main secretory events such as gene transcription, POMC-precursor translation and processing, posttranslational peptide modifications, and release of a bouquet of POMC-derived peptides. In conclusion, the Xenopus hypothalamo-hypophyseal system involved in background adaptation reveals how neuronal plasticity at the molecular, cellular and organismal levels, enable an organism to respond adequately to the continuously changing environmental factors demanding physiological adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.