We present the first astronomical detection of a diatomic negative ion, the cyanide anion CN − , and quantum mechanical calculations of the excitation of this anion by means of collisions with para-H 2 . The anion CN − is identified by observing the J = 2−1 and J = 3−2 rotational transitions in the C-star envelope IRC +10216 with the IRAM 30-m telescope. The U-shaped line profiles indicate that CN − , like the large anion C 6 H − , is formed in the outer regions of the envelope. Chemical and excitation model calculations suggest that this species forms from the reaction of large carbon anions with N atoms, rather than from the radiative attachment of an electron to CN, as is the case for large molecular anions. The unexpectedly high abundance derived for CN − , 0.25% relative to CN, indicates that its detection in other astronomical sources is likely. A parallel search for the small anion C 2 H − remains inconclusive, despite the previous tentative identification of the J = 1−0 rotational transition. The abundance of C 2 H − in IRC +10216 is found to be vanishingly small, <0.0014% relative to C 2 H.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.