The transformation of liquid water to solid ice is typically a slow process. To cool a sample below the melting point requires some time, as does nucleation from the metastable liquid 1 , so freezing usually occurs over many seconds 2. Freezing conditions can be created much more quickly using isentropic compression techniques, which provide insight into the limiting timescales of the phase transition. Here, we show that water rapidly freezes without a nucleator under sufficient compression, establishing a practical limit for the metastable liquid phase. Above 7 GPa, compressed water completely transforms to a high-pressure phase within a few nanoseconds. The consistent observation of freezing with different samples and container materials suggests that the transition nucleates homogeneously. The observation of complete freezing on these timescales further implies that the liquid reaches a hypercooled state 3. Computational studies suggest that freezing can occur on 0.1-1 ns timescales, although for water such simulations require a highly confined geometry 4 and/or strong electric fields 5,6. Unconfined simulations of supercooled water 7 indicate that freezing is possible on 100 ns timescales, many times faster than experimental observations. Simply cooling a liquid on that timescale is challenging: 10 7 −10 10 K s −1 cooling rates can be achieved by spraying droplets into a cryogen 8 , but it is difficult to carry out real-time measurements. The fastest real-time observation of freezing in expansion-cooled water clusters occurred on 10−30 μs timescales 9 , leaving a 2-3 decade gap between the experimental and computational studies of freezing. Adiabatic compression is an alternative route to solidification, even though liquids become hotter in the process. Temperature increase can be mitigated by using isentropic (rather than single shock wave) compression techniques, yielding the coldest possible adiabatic state. As shown in Fig. 1, isentropic compression of liquid water crosses the melt line between 2 and 3 GPa (T ≈ 400 K). Although compression freezing involves a different portion of the phase diagram than cooling (ice VII (ref. 10) rather than ice Ih), freezing conditions are created very quickly, providing insight into the limiting phase-transition timescales. When liquid water is isentropically compressed above 2 GPa in the presence of a quartz or fused-silica window, freezing will be observed over 10-100 ns timescales 11,12. The phase transition quickens with increasing pressure, but only in the presence of a silica window. Even at 5 GPa, where the liquid is nearly 70 K below the equilibrium melt line, no freezing is observed during compression within sapphire windows (≈800 ns experiment duration). Solidification is characterized by two basic events: the onset and the completion of freezing. The onset of freezing is defined by the time needed to create freezing conditions (whether by cooling
Isentropic compression experiments (ICE) have been performed on the Z accelerator facility at Sandia National Laboratory. We describe the experimental design that used large magnetic fields to slowly compress samples to pressures in excess of 400 kbar. Velocity wave profile measurements were analyzed to yield isentropic compression equations of state (EOS). The method can also yield material strength properties. We describe magnetohydronamic simulations and results of experiments that used the “square short” configuration to compress copper and discuss ICE EOS experiments that have been performed with this method on tantalum, molybdenum, and beryllium.
Hugoniot measurements were performed on aluminum (6061-T6) in the stress range of 100–500 GPa (1–5 Mbar) using a magnetically accelerated flyer plate technique. This method of flyer plate launch utilizes the high currents, and resulting magnetic fields produced at the Sandia Z Accelerator to accelerate macroscopic aluminum flyer plates (approximately 12×25 mm in lateral dimension and ∼300 μm in thickness) to velocities in excess of 20 km/s. This technique was used to perform plate-impact shock-wave experiments on aluminum to determine the high-stress equation of state (EOS). Using a near-symmetric impact method, Hugoniot measurements were obtained in the stress range of 100–500 GPa. The results of these experiments are in excellent agreement with previously reported Hugoniot measurements of aluminum in this stress range. The agreement at lower stress, where highly accurate gas gun data exist, establishes the magnetically accelerated flyer plate technique as a suitable method for generating EOS data. Furthermore, the present results exhibit increased accuracy over the previous techniques used to obtain data in the higher-stress range. This improved accuracy enhances our understanding of the response of aluminum to 500 GPa, and lends increased confidence to the use of aluminum as a standard material in future impedance matching experiments.
A capability to produce quasi-isentropic compression of solids using pulsed magnetic loading on the Z accelerator has recently been developed and demonstrated [C. A. Hall, Phys. Plasmas 7, 2069 (2000)]. This technique allows planar, continuous compression of materials to stresses approaching 1.5 Mbar. In initial stages of development, the experimental configuration used a magnetically loaded material cup or disk as the sample of interest pressed into a conductor. This installation caused distortions that limited the ability to attach interferometer windows or other materials to the rear of the sample. In addition, magnetic pressure was not completely uniform over sample dimensions of interest. A new modular configuration is described that improves the uniformity of loading over the sample surface, allows materials to be easily attached to the magnetically loaded sample, and improves the quality of data obtained. Electromagnetic simulations of the magnetic field uniformity for this new configuration will also be presented. Comparisons between data on copper to ∼300 kbar using the old and new experimental configurations will also be made. Results indicate that to within experimental error, the configurations produce similar results in the pressure-volume plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.