Parkinson disease is a common neurodegenerative disorder that leads to difficulty in effectively translating thought into action. Although it is known that dopaminergic neurons that innervate the striatum die in Parkinson disease, it is not clear how this loss leads to symptoms. Recent work has implicated striatopallidal medium spiny neurons (MSNs) in this process, but how and precisely why these neurons change is not clear. Using multiphoton imaging, we show that dopamine depletion leads to a rapid and profound loss of spines and glutamatergic synapses on striatopallidal MSNs but not on neighboring striatonigral MSNs. This loss of connectivity is triggered by a new mechanism-dysregulation of intraspine Cav1.3 L-type Ca(2+) channels. The disconnection of striatopallidal neurons from motor command structures is likely to be a key step in the emergence of pathological activity that is responsible for symptoms in Parkinson disease.
Numbers of neurones, synapses and axon terminals were quantified in a murine scrapie model with severe hippocampal pyramidal cell loss, in which definite clinical scrapie is evident from 226 days post-infection (dpi) and death occurs around 250 dpi. Disease-specific PrP accumulations were first seen at 70 dpi (28% of the incubation period (IP)) in thalamus and as sparse foci within the stratum pyramidale of CA1. By 98 dpi (39% IP), PrP was seen in the stratum radiatum and was found at later stages throughout all levels of the hippocampus. At the ultrastructural level in the stratum radiatum of CA1, a decrease in the numbers of simple synapses from 84 dpi (34% IP) and in perforated synapses from 98 dpi (42% IP) was found using an unbiased stereological method, the disector analysis. Degeneration of axon terminals was found from 98 dpi (39% IP) onwards. Neuronal loss was detected in CA1 from 180 dpi (72% IP). The results suggest that the fundamental lesion in the hippocampus of ME7-infected mice is associated with PrP release from CA1 pyramidal neurones, which perturbs synaptic function and leads to degeneration of preterminal axons, and that subsequent pathological changes including neurone loss are sequelae to this initial insult.
In the 6-hydroxydopamine model of Parkinson's disease in the rat, there is a significant reduction in the number of dendritic spines on the principal projection neurons in the neostriatum, presumably attributable to loss of the nigrostriatal dopamine input. These spines invariably receive input from terminals forming asymmetric synapses that originate mainly from the cortex. The object of the present study was to determine the fate of those terminals after the loss of dendritic spines. Unbiased estimates of synaptic density and absolute numbers of synapses in a defined volume of the neostriatum were made using the "disector" and Cavalieri techniques. Numerical synaptic density of asymmetric synaptic contacts was 17% lower in the neostriatum deprived of dopamine innervation and, in absolute terms, there were 3 billion (19%) fewer contacts. The numerical density of a subpopulation of asymmetric contacts on dendritic spines that have complex or perforated synaptic specializations and normally make up 9% of the asymmetric population was 44% higher on the experimental side. Asymmetric synapses were found to be enriched in glutamate using postembedding immunogold labeling. The present observations demonstrate that the loss of spines previously reported after 6-hydroxydopamine lesions is accompanied by a loss of asymmetric synapses rather than by the movement of synapses from spines to other postsynaptic targets. The study also demonstrates that there is an increase in complex synaptic interactions that have been implicated in synaptic plasticity in other regions of the CNS after experimental manipulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.