Each successive generation of X-ray machines has opened up new frontiers in science, such as the first radiographs and the determination of the structure of DNA. State-of-the-art X-ray sources can now produce coherent high-brightness Xrays of greater than kiloelectronvolt energy and promise a new revolution in imaging complex systems on nanometre and femtosecond scales. Despite the demand, only a few dedicated synchrotron facilities exist worldwide, in part because of the size and cost of conventional (accelerator) technology 1 . Here we demonstrate the use of a new generation of laserdriven plasma accelerators 2 , which accelerate high-charge electron beams to high energy in short distances 3-5 , to produce directional, spatially coherent, intrinsically ultrafast beams of hard X-rays. This reduces the size of the synchrotron source from the tens of metres to the centimetre scale, simultaneously accelerating and wiggling the electron beam. The resulting X-ray source is 1,000 times brighter than previously reported plasma wigglers 6,7 and thus has the potential to facilitate a myriad of uses across the whole spectrum of light-source applications.There are a number of proposals to use extreme nonlinear interactions of the latest generation of high-power ultrashort-pulse laser systems to produce beams of high-energy photons with high brightness and short pulse duration. For example, high-order harmonic generation promises trains of coherent pulselets 8 and Compton scattering could extend energies into the γ -regime 9,10 . An alternative proposal has been the use of compact laser-plasma accelerators to drive sources of undulating/wiggling radiation 11 .These accelerators use the plasma wakefield generated by the passage of an intense laser pulse through an underdense plasma 12 . Such wakefields can have intrinsic fields of more than 1,000 times greater than the best achievable by conventional accelerator technology, and thus can accelerate particles to high energies in a fraction of the distance. Recently, it has been demonstrated that at high laser power, the wakefield can be driven to sufficient amplitude to be able to trap large numbers of particles (>100 pC) from the background plasma and accelerate them in a narrow energy spread beam 3-5 , now producing beams of electrons of gigaelectronvoltscale energy of the order of 1 cm (refs 13,14).Such electron sources are of interest to replace the accelerators that drive current synchrotron sources, and typically use multiple periods of alternately poled magnets (undulators or wigglers) to reinforce the synchrotron emission over a length of a few metres. The first demonstrations of wakefield-driven radiation using external wigglers have also been reported, though still being limited to optical or near-optical wavelengths and modest peak brightness 15,16 .However, the particles being accelerated in the plasma accelerator also undergo transverse (betatron) oscillations when subject to the focusing fields of the plasma wave. These oscillations occur at the betatron frequen...
The acceleration of electrons to approximately 0.8 GeV has been observed in a self-injecting laser wakefield accelerator driven at a plasma density of 5.5x10(18) cm(-3) by a 10 J, 55 fs, 800 nm laser pulse in the blowout regime. The laser pulse is found to be self-guided for 1 cm (>10zR), by measurement of a single filament containing >30% of the initial laser energy at this distance. Three-dimensional particle in cell simulations show that the intensity within the guided filament is amplified beyond its initial focused value to a normalized vector potential of a0>6, thus driving a highly nonlinear plasma wave.
High energy ion beams (> MeV) generated by intense laser pulses promise to be viable alternatives to conventional ion beam sources due to their unique properties such as high charge [1, 2], low emittance [3,4], compactness and ease of beam delivery [5]. Typically the acceleration is due to the rapid expansion of a laser heated solid foil, but this usually leads to ion beams with large energy spread. Until now, control of the energy spread has only been achieved at the expense of reduced charge and increased complexity [6,7,8]. Radiation pressure acceleration (RPA) provides an alternative route to producing laser-driven monoenergetic ion beams [9,10]. In this paper, we show the interaction of an intense infrared laser with a gaseous hydrogen target can produce proton spectra of small energy spread (σ ∼ 4%), and low background. The scaling of proton energy with the ratio of intensity over density (I/n) indicates that the acceleration is due to the shock generated by radiation-pressure driven hole-boring of the critical surface [11,12]. These are the first high contrast mononenergetic beams that have been theorised from RPA [9,10,13,14,15], and makes them highly desirable for numerous ion beam applications.
We report experimental evidence for a Rayleigh-Taylor-like instability driven by radiation pressure of an ultraintense (10(21) W/cm(2)) laser pulse. The instability is witnessed by the highly modulated profile of the accelerated proton beam produced when the laser irradiates a 5 nm diamondlike carbon (90% C, 10% H) target. Clear anticorrelation between bubblelike modulations of the proton beam and transmitted laser profile further demonstrate the role of the radiation pressure in modulating the foil. Measurements of the modulation wavelength, and of the acceleration from Doppler-broadening of back-reflected light, agree quantitatively with particle-in-cell simulations performed for our experimental parameters and which confirm the existence of this instability.
We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.