Biochemical changes in the articular cartilage of the knees of mature dogs, one with natural and four with surgically induced osteoarthritis, have been investigated. The four dogs were killed three, six, nine and
An experimental model of osteoarthritis resulting from laxity of the joint was induced in eighteen mature dogs (at least two years old) by sectioning the anterior cruciate ligament of the right knee (stifle) with a stab incision, the left knee providing a control. A sham operation was also performed in three other dogs, in which a stab incision was made but the ligament left intact. The dogs were killed at various intervals from one to forty-eight weeks later. Morphological changes in bone, cartilage, synovial membrane and joint capsule were examined in all the joints and biochemical changes in the cartilage of three dogs killed after two, eight, and sixteen weeks. All the changes resulting from the operation progressed with time and became indistinguishable from those found in three dogs with natural osteoarthritis of the knee. There were no changes in the joints which had sham operations. As the time of onset is known, this experimental model in a larger species enables a study to be made of the biochemical as well as the morphological changes in the early stages of osteoarthritis.
Osteoarthrosis was induced in one knee joint of dogs by an established surgical procedure. Changes in the articular cartilage in the biosynthesis of collagen and other proteins were sought by radiochemical labelling in vivo, with the following findings. (1) Collagen synthesis was stimulated in all cartilage surfaces of the experimental joints at 2, 8 and 24 weeks after surgery. Systemic labelling with [3H]proline showed that over 10 times more collagen was being deposited per dry weight of experimental cartilage compared with control cartilage in the unoperated knee. (2) Type-II collagen was the radiolabelled product in all samples of experimental cartilage ranging in quality from undamaged to overtly fibrillated, and was the only collagen detected chemically in the matrix of osteoarthrotic cartilage from either dog or human joints. (3) Hydroxylysine glycosylation was examined in the newly synthesized cartilage collagen by labelling dog joints in vivo with [3H]lysine. In experimental knees the new collagen was less glycosylated than in controls. However, no difference in glycosylation of the total collagen in the tissues was observed by chemical analysis. (4) Over half the protein-bound tritium was extracted by 4 M-guanidinium chloride from control cartilage labelled with [3H]proline, compared with one-quarter or less from experimental cartilage. Two-thirds of the extracted tritium separated in the upper fraction on density-gradient centrifugation in CsCl under associative conditions. Much of this ran with a single protein band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under reducing conditions. The identity of this protein was unknown, although it resembled serum albumin in mobility afte disulphide-bond cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.