We have cloned the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene. The sterol methyl oxidase performs the first of three enzymic steps required to remove the two C-4 methyl groups leading to cholesterol (animal), ergosterol (fungal), and stigmasterol (plant) biosynthesis. An ergosterol auxotroph, erg25, which fails to demethylate and concomitantly accumulates 4,4-dimethylzymosterol, was isolated after mutagenesis. A complementing clone consisting of a 1.35-kb Dra I fragment encoded a 309-amino acid polypeptide (calculated molecular mass, 36.48 kDa). The amino acid sequence shows a C-terminal endoplasmic reticulum retrieval signal KKXX and three histidine-rich clusters found in eukaryotic membrane desaturases and in a bacterial alkane hydroxylase and xylene monooxygenase. The sterol profile of an ERG25 disruptant was consistent with the erg25 allele obtained by mutagenesis.In the synthesis of sterols, required components of eukaryotic membranes, an initial sterol (lanosterol in animals and fungi and cycloartenol in plants) undergoes three demethylations prior to formation of the end product sterol. The first demethylation occurs directly with lanosterol or cycloartenol and results in removal of the C-14 methyl group. The fungal demethylation is performed by the product of the ERG11 gene (Fig.
The autosomal Booroola fecundity gene (FecB) mutation in sheep increases ovulation rate and litter size, with associated effects on ovarian physiology and hormone profiles. Analysis of segregation in twelve families (379 female progeny) identified linkage between the mutation, two microsatellite markers (OarAE101 and OarHH55, Zmax > 9.0) and epidermal growth factor (EGF) from human chromosome 4q25 (Zmax > 3.0). The marker OarAE101 was linked to secreted phosphoprotein 1 (SPP1, which maps to chromosome 4q21-23 in man) in the test pedigrees and independent families (Zmax > 9.7). The identification of linkage between the FecB mutation and markers from human chromosome 4q is an important step towards further understanding the control of ovulation rates in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.