We report the development and availability of a mass spectral reference library for oligosaccharides in human milk. This represents a new variety of spectral library that includes consensus spectra of compounds annotated through various data analysis methods, a concept that can be extended to other varieties of biological fluids. Oligosaccharides from the NIST Standard Reference Material (SRM) 1953, composed of human milk pooled from 100 breastfeeding mothers, were identified and characterized using hydrophilic interaction liquid chromatography electrospray ionization tandem mass spectrometry (HILIC-ESI-MS/MS) and the NIST 17 Tandem MS Library. Consensus reference spectra were generated, incorporated into a searchable library, and matched using the newly developed hybrid search algorithm to elucidate unknown oligosaccharides. The NIST hybrid search program facilitates the structural assignment of complex oligosaccharides especially when reference standards are not commercially available. High accuracy mass measurement for precursor and product ions, as well as the relatively high MS/MS signal intensities of various oligosaccharide precursors with Fourier transform ion trap (FT-IT) and higher energy dissociation (HCD) fragmentation techniques, enabled the assignment of multiple free and underivatized fucosyllacto- and sialyllacto-oligosaccharide spectra. Neutral and sialylated isomeric oligosaccharides have distinct retention times, allowing the identification of 74 oligosaccharides in the reference material. This collection of newly characterized spectra based on a searchable, reference MS library of annotated oligosaccharides can be applied to analyze similar compounds in other types of milk or any biological fluid containing milk oligosaccharides.
Pectic oligosaccharides (POS) were obtained by hydrothermal treatment of orange peel wastes (OPW) and purified by membrane filtration to yield a refined product containing 90 wt % of the target products. AraOS (DP 3-21), GalOS (DP 5-12), and OGalA (DP 2-12, with variable DM) were identified in POS mixtures, but long-chain products were also present. The prebiotic potential of the concentrate was assessed by in vitro fermentation using human fecal inocula. For comparative purposes, similar experiments were performed using orange pectin and commercial fructo-oligosaccharides (FOS) as substrates for fermentation. The dynamics of selected microbial populations was assessed by fluorescent in situ hybridization (FISH). Gas generation, pH, and short-chain fatty acid (SCFA) production were also measured. Under the tested conditions, all of the considered substrates were utilized by the microbiota, and fermentation resulted in increased numbers of all the bacterial groups, but the final profile of the microbial population depended on the considered carbon source. POS boosted particularly the numbers of bifidobacteria and lactobacilli, so that the ratio between the joint counts of both genera and the total cell number increased from 17% in the inocula to 27% upon fermentation. SCFA generation from POS fermentation was similar to that observed with FOS, but pectin fermentation resulted in reduced butyrate generation.
This
study significantly expands both the scope and method of identification
for construction of a previously reported tandem mass spectral library
of 74 human milk oligosaccharides (HMOs) derived from results of combined
LC-MS/MS experiments and comprehensive structural analysis of HMOs.
In the present work, a hybrid search “bootstrap” identification
method was employed that substantially broadens the coverage of milk
oligosaccharides and thereby increases utility use of a spectrum library-based
method for the rapid tentative identification of all distinguishable
glycans in milk. This involved hybrid searching of the previous library,
which was itself constructed using the hybrid search of oligosaccharide
spectra in the NIST 17 Tandem MS Library. The general approach appears
applicable to library construction of other classes of compounds.
The coverage of oligosaccharides was significantly extended using
milks from a variety of mammals, including bovine, Asian buffalo,
African lion, and goat. This new method led to the identification
of another 145 oligosaccharides, including an additional 80 HMOs from
reanalysis of human milk. The newly identified compounds were added
to a freely available mass spectral reference database of 219 milk
oligosaccharides. We also provide suggestions to overcome several
limitations and pitfalls in the interpretation of spectra of unknown
oligosaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.