Ideally, for the needs of robust process simulation, one would like a nonlinear equation solving technique that can find any and all roots to a problem, and do so with mathematical certainty. In general, currently used techniques do not provide such rigorous guarantees. One approach to providing such assurances can be found in the use of interval analysis, in particular the use of interval Newton methods combined with generalized bisection. However, these methods have generally been regarded as extremely inefficient. Motivated by recent progress in interval analysis, as well as continuing advances in computer speed and the availability of parallel computing, we consider here the feasibility of using an interval Newton/generalized bisection algorithm on process simulation problems. An algorithm designed for parallel computing on an MIMD machine is described, and results of tests on several problems are reported. Experiments indicate that the interval Newton/generalized bisection method works quite well on relatively small problems, providing a powerful method for finding all solutions to a problem. For larger problems, the method performs inconsistently with regard to efficiency, at least when reasonable initial bounds are not provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.