We have developed an efficient room-temperature ytterbium-doped YAG laser operating at 1.03 microm pumped by an InGaAs strained-layer diode laser operating at 968 nm. The threshold was 234 mW and 23 mW of output power was obtained for an absorbed pump power of 345 mW. This laser offers a number of advantages over AlGaAs pumped Nd:YAG lasers, such as broader absorption features, longer fluorescent lifetime, and lower thermal loading of the gain medium.
This report was prepared as an account of work sponsored by the United States Government. AbstractThe hotside operating temperatures for many projected thennophotovoltaic (TPV) conversion system applications are approximately 10oO 'C, which sets an upper limit on the TPV diode bandgap of 0.6 eV from efficiency and power density considerations. This bandgap requirement has necessitated the development of new diode material systems, never previously considered for energy generation. To date, InGaAsSb quaternary diodes grown lattice-matched on GaSb substrates have achieved the highest performance. This report relates observed diode performance to electrooptic properties such as minority carrier lifetime, diffusion length and mobility and provides initial links to microstructural properties. This analysis has bounded potential diode performance improvements. For the 0.52 eV InGaAsSb diodes used in this analysis the measured dark current is 2 x Ncm2 (no photon recycling), and an absolute thermodynamic limit of 1.4 x A/cm2. These dark currents are equivalent to open circuit voltage gains of 20 mV (7%), 60 mV (20%) and 140 mV (45%), respectively.
Minority carrier lifetimes in 0.55 eV band-gap GaInAsSb epitaxial layers that are double capped with GaSb or AlGaAsSb layers were determined using time-resolved photoluminescence. It was found that accumulation of electrons at the p-doped GaInAsSb/GaSb type-II interface contributes significantly to the interfacial recombination velocity S, which was measured to be 3100 cm/s. The use of heavily p-doped GaSb cap layers was proposed to eliminate the potential well of electrons and barrier for holes at the interface. Increasing the GaSb cap doping level from 1ϫ10 16 to 2 ϫ10 18 cm Ϫ3 resulted in a 2.7 times reduction of S down to 1140 cm/s. The smallest value of S was determined to be 720 cm/s, which was obtained for structures with AlGaAsSb cap layers that have no valence band offset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.