We present high-speed, three-colour photometry of seven short period (P orb 95 mins) eclipsing CVs from the Sloan Digital Sky Survey. We determine the system parameters via a parametrized model of the eclipse fitted to the observed lightcurve by χ 2 minimization. Three out of seven of the systems possess brown dwarf donor stars and are believed to have evolved past the orbital period minimum. This is in line with predictions that 40-70 per cent of CVs should have evolved past the orbital period minimum. Therefore, the main result of our study is that the missing population of post-period minimum CVs has finally been identified. The donor star masses and radii are, however, inconsistent with model predictions; the donor stars are approximately 10 per cent larger than expected across the mass range studied here. One explanation for the discrepancy is enhanced angular momentum loss (e.g. from circumbinary discs), however the mass-transfer rates, as deduced from white dwarf effective temperatures, are not consistent with enhanced angular momentum loss. We show it is possible to explain the large donor radii without invoking enhanced angular momentum loss by a combination of geometrical deformation and the effects of starspots due to strong rotation and expected magnetic activity. Choosing unambiguously between these different solutions will require independent estimates of the mass-transfer rates in short period CVs. The white dwarfs in our sample show a strong tendency towards high masses. We show that this is unlikely to be due to selection effects. The dominance of high-mass white dwarfs in our sample implies that erosion of the white dwarf during nova outbursts must be negligible, or even that white dwarfs grow in mass through the nova cycle. Amongst our sample there are no Helium core white dwarfs, despite predictions that 30-80 per cent of short period CVs should contain Helium core white dwarfs. We are unable to rule out selection effects as the cause of this discrepancy.
When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system's dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2 • ) and true 3D obliquity (ψ ≈ 7 +12 −4• ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.
No abstract
We present the discovery of four new transiting hot Jupiters, detected mainly from SuperWASP-North and SOPHIE observations. These new planets, WASP-52b, WASP-58b, WASP-59b, and WASP-60b, have orbital periods ranging from 1.7 to 7.9 days, masses between 0.46 and 0.94 M Jup , and radii between 0.73 and 1.49 R Jup . Their G1 to K5 dwarf host stars have V magnitudes in the range 11.7−13.0. The depths of the transits are between 0.6 and 2.7%, depending on the target. With their large radii, WASP-52b and WASP-58b are new cases of low-density, inflated planets, whereas WASP-59b is likely to have a large, dense core. WASP-60 shows shallow transits. In the case of WASP-52 we also detected the Rossiter-McLaughlin anomaly via time-resolved spectroscopy of a transit. We measured the sky-projected obliquity λ = 24 • +17 −9 , indicating that WASP-52b orbits in the same direction as its host star is rotating and that this prograde orbit is slightly misaligned with the stellar equator. These four new planetary systems increase our statistics on hot Jupiters and provide new targets for follow-up studies.
Recent analyses 1-4 of data from the NASA Kepler spacecraft 5 have established that planets with radii within 25 per cent of Earth's (R⊕) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars 1 . Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined 6,7 are Kepler-10b (1.42R⊕) and Kepler-36b (1.49R⊕), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered 8 and found to have a radius of only 1.16R⊕. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm −3 , which is similar to that of the Earth and implies a composition of iron and rock.Every 8.5 h, the star Kepler-78 (first known as TYC 3147-188-1 and later designated KIC 8435766) presents to Earth a shallow eclipse consistent 8 with the passage of an orbiting planet with a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.