Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) onboard the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated temperature and emission measure-based background subtraction method (TEBBS), which builds on the methods of Bornmann (1990). Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. (2005). TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles , and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power-laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The resulting TEBBS database of thermal flare plasma properties is publicly available on Solar Monitor (www.solarmonitor.org/TEBBS/) and will be available on Heliophysics Integrated Observatory (www.helio-vo.eu).
GRB 990123 was the first burst from which simultaneous optical, X-ray and gammaray emission was detected; its afterglow has been followed by an extensive set of radio, optical and X-ray observations. We have studied the gamma-ray burst itself as observed by the CGRO detectors. We find that gamma-ray fluxes are not correlated with the simultaneous optical observations, and the gamma-ray spectra cannot be extrapolated simply to the optical fluxes. The burst is well fit by the standard four-parameter GRB function, with the exception that excess emission compared to this function is observed below ∼ 15 keV during some time intervals. The burst is characterized by the typical hard-to-soft and hardness-intensity correlation spectral evolution patterns. The energy of the peak of the νf ν spectrum, E p , reaches an unusually high value during the first intensity spike, 1470 ± 110 keV, and then falls to ∼300 keV during the tail of the burst. The high-energy spectrum above ∼ 1 MeV is consistent with a power law with a photon index of about −3. By fluence, GRB 990123 is brighter than all but 0.4% of the GRBs observed with BATSE, clearly placing it on the −3/2 power-law portion of the intensity distribution. However, the redshift measured for the afterglow is inconsistent with the Euclidean interpretation of the −3/2 power-law. Using the redshift value of ≥ 1.61 and assuming isotropic emission, the gamma-ray fluence exceeds 10 54 ergs.
A new method for automated detection of polar coronal holes is presented. This method, called perimeter tracing, uses a series of 171, 195, and 304 Å full disk images from the Extreme ultraviolet Imaging Telescope (EIT) on SOHO over solar cycle 23 to measure the perimeter of polar coronal holes as they appear on the limbs. Perimeter tracing minimizes line-of-sight obscurations caused by the emitting plasma of the various wavelengths by taking measurements at the solar limb. Perimeter tracing also allows for the polar rotation period to emerge organically from the data as 33 days. We have called this the Harvey rotation rate and count Harvey rotations starting 4 January 1900. From the measured perimeter, we are then able to fit a curve to the data and derive an area within the line of best fit. We observe the area of the northern polar hole area in 1996, at the beginning of solar cycle 23, to be about 4.2% of the total solar surface area and about 3.6% in 2007. The area of the southern polar hole is observed to be about 4.0% in 1996 and about 3.4% in 2007. Thus, both the north and south polar hole areas are no more than 15% smaller now than they were at the beginning of cycle 23. This compares to the polar magnetic field measured to be about 40% less now than it was a cycle ago.
Subgraph patterns are widely used in graph classification, but their effectiveness is often hampered by large number of patterns or lack of discrimination power among individual patterns. We introduce a novel classification method based on pattern cooccurrence to derive graph classification rules. Our method employs a pattern exploration order such that the complementary discriminative patterns are examined first. Patterns are grouped into co-occurrence rules during the pattern exploration, leading to an integrated process of pattern mining and classifier learning. By taking advantage of co-occurrence information, our method can generate strong features by assembling weak features. Unlike previous methods that invoke the pattern mining process repeatedly, our method only performs pattern mining once. In addition, our method produces a more interpretable classifier and shows better or competitive classification effectiveness in terms of accuracy and execution time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.