A new sensor made of a vinyl-ester polymer composite filled with multilayer graphene nanoplatelets (MLG) is produced through an innovative capillary rise method for application in strain sensing and structural health monitoring. The new sensor is characterized by high stability of the piezoresistive response under quasi-static consecutive loading/unloading cycles and monotonic tests. This is due to the peculiarity of the fabrication process that ensures a smooth and clean surface of the sensor, without the presence of filler agglomerates acting as micro- or macro-sized defects in the composite.
In this work we investigate the shielding properties of graphene-based films, produced by spray casting deposition, which is a cost-effective technique that can be directly scaled to industrial applications. The deposition process is optimized in order to produce uniform films made of well dispersed graphene nanoplatelets (GNP), having thicknesses in the range 3-8 microns. The sheet resistance and the shielding effectiveness up to 18 GHz of films produced using GNP-suspensions at different concentrations are measured and compared with the ones of carbon nanotube (CNT)-based films, produced in the same conditions. The obtained results demonstrate the superior shielding properties of graphene-based films with respect to CNT-ones, mainly due to the bi-dimensional shape of GNPs, which contributes to minimizing the contact resistances among adjacent nanostructures. It is also demonstrated that after a thermal annealing at 250°C, the final measured shielding effectiveness of the produced GNP-film triplicates in linear scale, reaching the value of 30.6 dB
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.