While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. Infection results from environmental exposure to Coccidiodies, which is believed to grow as a soil saprophyte in arid deserts. To investigate hypotheses about the life history and evolution of Coccidioides, the genomes of several Onygenales, including C. immitis and C. posadasii; a close, nonpathogenic relative, Uncinocarpus reesii; and a more diverged pathogenic fungus, Histoplasma capsulatum, were sequenced and compared with those of 13 more distantly related Ascomycetes. This analysis identified increases and decreases in gene family size associated with a host/substrate shift from plants to animals in the Onygenales. In addition, comparison among Onygenales genomes revealed evolutionary changes in Coccidioides that may underlie its infectious phenotype, the identification of which may facilitate improved treatment and prevention of coccidioidomycosis. Overall, the results suggest that Coccidioides species are not soil saprophytes, but that they have evolved to remain associated with their dead animal hosts in soil, and that Coccidioides metabolism genes, membrane-related proteins, and putatively antigenic compounds have evolved in response to interaction with an animal host.
We have sequenced the genomes of 18 isolates of the closely related human pathogenic fungi Coccidioides immitis and Coccidioides posadasii to more clearly elucidate population genomic structure, bringing the total number of sequenced genomes for each species to 10. Our data confirm earlier microsatellite-based findings that these species are genetically differentiated, but our population genomics approach reveals that hybridization and genetic introgression have recently occurred between the two species. The directionality of introgression is primarily from C. posadasii to C. immitis, and we find more than 800 genes exhibiting strong evidence of introgression in one or more sequenced isolates. We performed PCRbased sequencing of one region exhibiting introgression in 40 C. immitis isolates to confirm and better define the extent of gene flow between the species. We find more coding sequence than expected by chance in the introgressed regions, suggesting that natural selection may play a role in the observed genetic exchange. We find notable heterogeneity in repetitive sequence composition among the sequenced genomes and present the first detailed genome-wide profile of a repeat-induced point mutation (RIP) process distinctly different from what has been observed in Neurospora. We identify promiscuous HLA-I and HLA-II epitopes in both proteomes and discuss the possible implications of introgression and population genomic data for public health and vaccine candidate prioritization. This study highlights the importance of population genomic data for detecting subtle but potentially important phenomena such as introgression.
Complement depletion with cobra venom factor (CVF) before coronary artery ligation has been previously shown to reduce subsequent ischemic myocardial tissue injury in the baboon; however, whether complement depletion after the initiation of acute myocardial ischemia affords similar myocardial preservation is not known. Both complement depletion with CVF or the administration of certain nonsteroidal anti-inflammatory drugs, including ibuprofen, are thought to decrease myocardial infarct size by reducing polymorphonuclear leukocytic (PMN) infiltration; nevertheless, complement activation also could alter tissue injury by PMNindependent actions. Thus, the relative efrects of CVF administered after coronary artery ligation on the subsequent development of myocardial tissue injury were assessed in a baboon myocardial infarction model. The animals were randomized into three treatment groups (n=6): either CVF (125 units/kg) or saline was given 30 minutes after coronary artery ligation, and ibuprofen (12.5 mg/kg) was administered 30 minutes and 4 hours after ligation. The extent of ischemic myocardial injury was assessed 24 hours later. Relative to saline-treated baboons, both CVF and ibuprofen reduced PMN infiltration (36±4 vs. 24±4 and 24±4 PMN/mm2, respectively; mean±SEM) and histological evidence of transmural myocardial infarction (100% vs. 47% and 53%, respectively) in electrocardiographically designated, expected infarct sites. In both saline-and ibuprofen-treated animals, there was extensive localization of C4, C3, and C5 in all infarct sites; in contrast, there was only C4 localization in the CVF-treated baboons. When expected infarct sites were assessed for creatine kinase content as an indicator of tissue injury, there was significantly less epicardial and endocardial creatine kinase depletion in the CVF-treated animals (31.7±5.6% and 39.3±4.8%) than in the saline-treated animals (54.1±5.4% and 59.0±4.7%; p=0.012 and 0.011, respectively). The percent creatine kinase depletion in the ibuprofen-treated animals was intermediate between the two other groups. These results suggest that depletion of complement after coronary ligation has beneficial effects in reducing tissue injury that cannot be explained solely on the basis of reducing PMN infiltration into the ischemic myocardium.
Some chemosensory proteins (CSPs) are expressed in insect sensory appendages and are thought to be involved in chemical signaling by ants. We identified fourteen unique CSP sequences in EST libraries of the red imported fire ant, Solenopsis invicta. One member of this group (Si-CSP1) is highly expressed in worker antennae, suggesting an olfactory function. A shotgun proteomic analysis of antennal proteins confirms the high level of Si-CSP1 expression, and also shows expression of another CSP and two odorant-binding proteins (OBPs). We cloned and expressed the coding sequence for Si-CSP1. We used cyclodextrins as solubilizers to investigate ligand binding. Fire ant cuticular lipids strongly inhibit Si-CSP1 binding to the fluorescent dye N-phenyl-naphthylamine, suggesting cuticular substances are ligands for Si-CSP1. Analysis of the cuticular lipids shows that the endogenous ligands of Si-CSP1 are not cuticular hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.