International audienceQuadrature formulae are established for product integration rules based on discrete spline quasi-interpolants on a bounded interval. The integrand considered may have algebraic or logarithmic singularities. These formulae are then applied to the numerical solution of integral equations with weakly singular kernels
International audienceIn this paper, we propose an interesting method for approximating the solution of a two dimensional second kind equation with a smooth kernel using a bivariate quadratic spline quasi-interpolant (abbr. QI) defined on a uniform criss-cross triangulation of a bounded rectangle. We study the approximation errors of this method together with its Sloan's iterated version and we illustrate the theoretical results by some numerical examples
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.