Emissions of sulfur trioxide (SO 3 ) are a key component of plume opacity and acid deposition. Consequently, these emissions need to be low enough to not cause opacity violations and acid deposition. Generally, a small fraction of sulfur (S) in coal is converted to SO 3 in coal-fired combustion devices such as electric utility boilers. The emissions of SO 3 from such a boiler depend on coal S content, combustion conditions, flue gas characteristics, and air pollution devices being used. It is well known that the catalyst used in the selective catalytic reduction (SCR) technology for nitrogen oxides control oxidizes a small fraction of sulfur dioxide in the flue gas to SO 3 . The extent of this oxidation depends on the catalyst formulation and SCR operating conditions. Gas-phase SO 3 and sulfuric acid, on being quenched in plant equipment (e.g., air preheater and wet scrubber), result in fine acidic mist, which can cause increased plume opacity and undesirable emissions. Recently, such effects have been observed at plants firing high-S coal and equipped with SCR systems and wet scrubbers. This paper investigates the factors that affect acidic mist production in coal-fired electric utility boilers and discusses approaches for mitigating emission of this mist. INTRODUCTIONAs understanding of the adverse effects of air pollution has grown, so also has the complexity of coal-fired power plant design and operation, especially with regard to air pollution control systems. Control of air pollutant emissions is not only a legal requirement but also is becoming a financial necessity, as salability of effluents and trading of emissions increase the direct monetary value of emissions control. The days when one must only consider the nuisance value of fly ash are long past. 1 As plant complexity has increased, so have unexpected consequences of changing segments of the total chemical process that occurs between fuel preparation and ultimate emissions. One of the more discernible adverse consequences is the formation and emission of sulfur trioxide (SO 3 )/sulfuric acid (H 2 SO 4 ), as highlighted by the recent and well-publicized experiences of a power plant in Ohio. 2 Although not directly subject to emission limits, SO 3 is important to consider during the design and operation of coal-fired utility boilers for a number of environmental and plant performance reasons.The formation of SO 3 will occur during the combustion of sulfur (S)-bearing fuels such as coal and heavy fuel oils. Virtually all of the SO 3 converts to H 2 SO 4 as flue gas is cooled in the air preheater (APH). Relatively high concentrations of SO 3 /H 2 SO 4 in the boiler, stack, or plume can cause adverse impacts to plant equipment and to the environment. Impacts on plant equipment can include corrosion, fouling, and plugging and may require additional hardware or changes in operation to minimize SO 3 / H 2 SO 4 concentrations and the resulting adverse impacts.
U.S. Environmental Protection Agency (EPA) research examining the characteristics of primary PM generated by the combustion of fossil fuels is being conducted in efforts to help determine mechanisms controlling associated adverse health effects. Transition metals are of particular interest, due to the results of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal and residual fuel oils. Further, elemental speciation may influence this toxicity, as some species are significantly more water-soluble, and potentially more bio-available, than others. This paper presents results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particle size distributions (PSDs) were determined using atmospheric and low-pressure impaction as well as electrical mobility, time-of-flight, and light-scattering techniques. Size-classified PM samples from this study are also being utilized by colleagues for animal instillation experiments. Experimental results on the mass and compositions of particles between 0.03 and > 20 microns in aerodynamic diameter show that PM from the combustion of these fuels produces distinctive bimodal and trimodal PSDs, with a fine mode dominated by vaporization, nucleation, and growth processes. Depending on the fuel and combustion equipment, the coarse mode is composed primarily of unburned carbon char and associated inherent trace elements (fuel oil) and fragments of inorganic (largely calcium-alumino-silicate) fly ash including trace elements (coal). The three coals also produced a central mode between 0.8- and 2.0-micron aerodynamic diameter. However, the origins of these particles are less clear because vapor-to-particle growth processes are unlikely to produce particles this large. Possible mechanisms include the liberation of micron-scale mineral inclusions during char fragmentation and burnout and indicates that refractory transition metals can contribute to PM < 2.5 microns without passing through a vapor phase. When burned most efficiently, the residual fuel oil produces a PSD composed almost exclusively of an ultrafine mode (approximately 0.1 micron). The transition metals associated with these emissions are composed of water-soluble metal sulfates. In contrast, the transition metals associated with coal combustion are not significantly enriched in PM < 2.5 microns and are significantly less soluble, likely because of their association with the mineral constituents. These results may have implications regarding health effects associated with exposure to these particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.