Abiotic stresses adversely affect rice yield and productivity, especially under the changing climatic scenario. Exposure to multiple abiotic stresses acting together aggravates these effects. The projected increase in global temperatures, rainfall variability, and salinity will increase the frequency and intensity of multiple abiotic stresses. These abiotic stresses affect paddy physiology and deteriorate grain quality, especially milling quality and cooking characteristics. Understanding the molecular and physiological mechanisms behind grain quality reduction under multiple abiotic stresses is needed to breed cultivars that can tolerate multiple abiotic stresses. This review summarizes the combined effect of various stresses on rice physiology, focusing on grain quality parameters and yield traits, and discusses strategies for improving grain quality parameters using high-throughput phenotyping with omics approaches.
Quantitative trait loci (QTL) for rice grain weight identified using bi-parental populations in various environments were found inconsistent and have a modest role in marker assisted breeding and map-based cloning programs. Thus, the identification of a consistent consensus QTL region across populations is critical to deploy in marker aided breeding programs. Using the QTL meta-analysis technique, we collated rice grain weight QTL information from numerous studies done across populations and in diverse environments to find constitutive QTL for grain weight. Using information from 114 original QTL in meta-analysis, we discovered three significant Meta-QTL (MQTL) for grain weight on chromosome 3. According to gene ontology, these three MQTL have 179 genes, 25 of which have roles in developmental functions. Amino acid sequence BLAST of these genes indicated their orthologue conservation among core cereals with similar functions. MQTL3.1 includes the OsAPX1, PDIL, SAUR, and OsASN1 genes, which are involved in grain development and have been discovered to play a key role in asparagine biosynthesis and metabolism, which is crucial for source-sink regulation. Five potential candidate genes were identified and their expression analysis indicated a significant role in early grain development. The gene sequence information retrieved from the 3 K rice genome project revealed the deletion of six bases coding for serine and alanine in the last exon of OsASN1 led to an interruption in the synthesis of α-helix of the protein, which negatively affected the asparagine biosynthesis pathway in the low grain weight genotypes. Further, the MQTL3.1 was validated using linked marker RM7197 on a set of genotypes with extreme phenotypes. MQTL that have been identified and validated in our study have significant scope in MAS breeding and map-based cloning programs for improving rice grain weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.