Abstract. Semantic segmentation of remote sensing images has many practical applications such as urban planning or disaster assessment. Deep learning-based approaches have shown their usefulness in automatically segmenting large remote sensing images, helping to automatize these tasks. However, deep learning models require large amounts of labeled data to generalize well to unseen scenarios. The generation of global-scale remote sensing datasets with high intraclass variability presents a major challenge. For this reason, data augmentation techniques have been widely applied to artificially increase the size of the datasets. Among them, photometric data augmentation techniques such as random brightness, contrast, saturation, and hue have been traditionally applied aiming at improving the generalization against color spectrum variations, but they can have a negative effect on the model due to their synthetic nature. To solve this issue, sensors with high revisit times such as Sentinel-1 and Sentinel-2 can be exploited to realistically augment the dataset. Accordingly, this paper sets out a novel realistic multi-temporal color data augmentation technique. The proposed methodology has been evaluated in the building and road semantic segmentation tasks, considering a dataset composed of 38 Spanish cities. As a result, the experimental study shows the usefulness of the proposed multi-temporal data augmentation technique, which can be further improved with traditional photometric transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.