An indoor air monitoring device is one of the most prominent consumer applications of an electronic nose (EN). Integral gas analysis similar to biogenic odor perception can be a versatile tool to obtain continuous information about pollutants, odors, and air compositions indicating gaseous precursors of dangers such as fires. However, an EN to be used as a common household device has to combine high sensitivity and excellent gas discrimination power with inexpensiveness, small size, and low power consumption. A special gas sensor microarray of thumbnail size has been developed at the Forschungszentrum Karlsruhe based on metal-oxide technology to meet these requirements. The microarray is produced by simply partitioning a monolithic metaloxide layer with parallel electrode strips allowing low cost fabrication. A temperature gradient and a membrane thickness gradient (on metal-oxide layer) are responsible for differentiation between the individual sensor segments and thus for the conductivity patterns that are accordingly produced. The two membranes form the basis of gas discrimination power, reliability self checks, and online noise reduction. Model gas exposures show detection limits lower than 1 ppm, usually. Successful practical tests are reported on the detection of overheated wire insulation for fire prevention as well as on air quality analysis for air conditioning purposes (e.g., air quality control during a meeting).
The alkali extraction of the organic matter from the soils of certain plots of the classical permanent experiments on Barnfield and Broadbalk at Rothamsted, receiving respectively organic manure, artificial fertilisers and no manurial treatment, has been studied, together with a colorimetric examination of the extracts for the comparison of the content of humic matter.It is shown that, in spite of the different cultural and manurial treatments which the different plots have received, there is a marked similarity in the properties of the organic matter of these soils, with regard to its behaviour on extraction with cold and hot dilute caustic soda, and the colour intensity of the organic matter in the extracts.The methods used for the determination of organic carbon in the soils and their extracts are noted in an Appendix.The results discussed in this paper are further considered, along with those in the two next following Parts (III and IV), in Part V of this series, in their bearings on the origin of the humic matter of the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.