Transmission computed tomography (TCT) has been shown to be an accurate method of acquiring non-uniform attenuation maps for single-photon emission computed tomography (SPECT) attenuation compensation. One commonly encountered problem, especially for convergent beam geometries, is image truncation. We describe two methods for reducing associated truncation artifacts, with the goal of improving SPECT attenuation compensation without unduly increasing imaging or reconstruction times: (i) the two-scan method, which reduces the degree of truncation by combining two short-duration, patient-shifted scans, and (ii) a quantitative extrapolation method, which fills in truncated projections accounting for the correct amount of attenuating medium in the slice. The methods are evaluated by imaging two phantoms on a fan beam TCT system. Projection sets are truncated to various degrees with software, and reconstructed images are compared to both untruncated filtered backprojection and iterative reconstructions of truncated data. A fundamental analysis of SPECT attenuation factors is performed, and attenuation compensation of a cardiac insert is analysed. Results indicate the two-scan method can effectively reduce the degree of truncation in many cases, and the quantitative extrapolation method greatly improves SPECT attenuation compensation over using truncated maps.
A computational method for obtaining Three-Dimensional reconstructions of positron emitting radio-• nuclei distributions using a Planar Positron camera is described. The method involves the use of a Filtered Fourier Deconvolution Method. Construction of Generalized Tomograms capable of emphasizing the large angle • events is introduced. The finite size of the Positron Camera detector and its effec•t on the reconstruction are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.