MEMS based laser projection is of high interest for automotive head-up displays and dashboard displays, as well as for an increasing number of personal mobile projection applications. These applications require scanning mirrors that offer high scan frequencies and wide scan angles while showing low power consumption. This paper presents a novel low-power high-Q scanning mirror that is vacuum encapsulated on wafer level and thereby exhibits Q-factors exceeding 145,000. A new glass forming process enables fabrication of glass wafers with inclined 3D-shaped windows needed to spatially separate the direct reflex from the projected image
A method for generating femtosecond duration X-ray pulses using a single-pass free-electron laser (FEL) is presented. This method uses an energy-chirped electron beam propagating through an undulator to produce a frequency-chirped X-ray pulse through self-amplified spontaneous emission (SASE). After the undulator, we consider passing the radiation through a monochromator. The frequency is correlated to the longitudinal position within the pulse; therefore, by selecting a narrow bandwidth, a short temporal pulse will be transmitted. The short pulse radiation is used to seed a second undulator, where the radiation is amplified to saturation. In addition to short pulse generation, this scheme has the ability to control shot-to-shot fluctuations in the central wavelength due to electron beam energy jitter. We present calculations of the radiation characteristics produced by a chirped-beam two-stage SASE-FEL, and consider the performance of the chirped-beam two-stage option for the Linac Coherent Light Source. r
Abstract. Raman forward scattering of a high-intensity, short-duration, frequency-chirped laser pulse propagating in an underdense plasma is examined. The growth of the direct forward scattered light is calculated for a laser pulse with a linear frequency chirp in various spatiotemporal regimes. This includes a previously undescribed regime of strongly-coupled four-wave nonresonant interaction, which is important for relativistic laser intensities. In all regimes of forward scattering, it is shown that the growth rate increases (decreases) for positive (negative) frequency chirp. The effect of chirp on the growth rate is relatively minor, i.e., a few percent chirp yields few percent changes in the growth rates. Relation of these results to recent experiments is discussed.
No abstract
It is widely accepted that the next lepton collider beyond a Higgs factory would require center-of-mass energy of the order of up to 15 TeV. Since, given reasonable space and cost restrictions, conventional accelerator technology reaches its limits near this energy, high-gradient advanced acceleration concepts are attractive. Advanced and novel accelerators (ANAs) are leading candidates due to their ability to produce acceleration gradients on the order of 1-100 GV/m, leading to compact acceleration structures. Over the last 10-15 years significant progress has been achieved in accelerating electron beams by ANAs. For example, the demonstration of several-GeV electron beams from laser-powered capillary discharge waveguides, as well as the proof-of-principle coupling of two accelerating structures powered by different laser pulses, has increased interest in ANAs as a viable technology to be considered for a compact, TeV-class, lepton linear collider.However, intermediate facilities are required to test the technology and demonstrate key subsystems. A 20-100 GeV center-of-mass energy ANA-based lepton collider can be a possible candidate for an intermediate facility. Apart from being a test beam facility for accelerator and detector studies, this collider will provide opportunities to study muon and proton beam acceleration, investigate charged particle interactions with extreme electromagnetic fields (relevant for beam delivery system designs and to study the physics at the interaction point), as well as precision Quantum Chromodynamics and Beyond the Standard Model physics measurements. Possible applications of this collider include the studies of γγ and e-ion collider designs.The advanced accelerator and HEP communities propose the following recommendations to the Snowmass conveners:1. The research continue on the science case for the intermediate facility in the framework of the General Accelerator R&D (GARD) program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.