Abstract. Recent advancements in 3D city modelling and emerging trends in implementing and realising Digital Twins motivate the Department of Survey and Mapping Malaysia (JUPEM) to develop and implement SmartKADASTER (SKiP) Phase 2. SmartKADASTER Phase I was a precursor to this system, and it primarily focused on applying two-dimensional (2D) spatial data for 3D spatial analysis. CityGML was used as the data model for various Levels of Detail (LoD) in this new initiative to represent city models across the Greater Kuala Lumpur region. SmartKADASTER however, lacks strata information. Therefore, to integrate strata information into the SKiP citymodel environment, an Application Domain Extension (ADE) for CityGML has been developed to convert existing Strata XML to StrataGML, a CityGML-compliant data output format. This paper describes the purpose of the SmartKADASTER initiative in Section 1. Section 2 explains additional context for the initiative as well as some backgrounds. Section 3 discusses the conversion workflow and ADE definitions, followed by a brief discussion of visualisation in Section 4 and a project summary in Section 5.
Spatial Data Infrastructures (SDIs) are frequently used to exchange 2D & 3D data, in areas such as city planning, disaster management, urban navigation and many more. City Geography Mark-up Language (CityGML), an Open Geospatial Consortium (OGC) standard has been developed for the storage and exchange of 3D city models. Due to its encoding in XML based format, the data transfer efficiency is reduced which leads to data storage issues. The use of CityGML for analysis purposes is limited due to its inefficiency in terms of file size and bandwidth consumption. This paper introduces XML based compression technique and elaborates how data efficiency can be achieved with the use of schema-aware encoder. We particularly present CityGML Schema Aware Compressor (CitySAC), which is a compression approach for CityGML data transaction within SDI framework. Our test results show that the encoding system produces smaller file size in comparison with existing state-of-the-art compression methods. The encoding process significantly reduces the file size up to 7–10% of the original data.
Web services utilizations in Spatial Data Infrastructure (SDI) have been well established and standardized by Open Geospatial Consortium (OGC). Similar web services for 3D SDI are also being established in recent years, with extended capabilities to handle 3D spatial data. The increasing popularity of using <i>City Geographic Markup Language</i> (CityGML) for 3D city modelling applications leads to the needs for large spatial data handling for data delivery. This paper revisits the available web services in OGC Web Services (OWS), and propose the background concepts and requirements for encoding spatial data via Web Encoding Service (WES). Furthermore, the paper discusses the data flow of the encoder within web service, e.g. possible integration with Web Processing Service (WPS) or Web 3D Services (W3DS). The integration with available web service could be extended to other available web services for efficient handling of spatial data, especially 3D spatial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.