The recent observation of superconductivity with critical temperatures (T c ) up to 55 K in the pnictide RFeAsO 1−x F x , where R is a lanthanide, marks the first discovery of a noncopper-oxide-based layered high-T c superconductor 1-3 . It has raised the suspicion that these new materials share a similar pairing mechanism to the cuprate superconductors, as both families exhibit superconductivity following charge doping of a magnetic parent material. In this context, it is important to follow the evolution of the microscopic magnetic properties of the pnictides with doping and hence to determine whether magnetic correlations coexist with superconductivity. Here, we present a muon spin rotation study on SmFeAsO 1−x F x , with x = 0-0.30 that shows that, as in the cuprates, static magnetism persists well into the superconducting regime. This analogy is quite surprising as the parent compounds of the two families have rather different magnetic ground states: itinerant spin density wave for the pnictides contrasted with the MottHubbard insulator in the cuprates. Our findings therefore suggest that the proximity to magnetic order and associated soft magnetic fluctuations, rather than strong electronic correlations in the vicinity of a Mott-Hubbard transition, may be the key ingredients of high-T c superconductors.Similar to the cuprates, the pnictide high-critical-temperature (T c ) superconductors (HTSCs) have a layered structure comprising alternating FeAs and LaO sheets, with the Fe arranged on a square lattice 1 . Theoretical calculations predict a quasi-twodimensional electronic structure, with LaO layers that mainly act as blocking layers and metallic FeAs layers that are responsible for superconductivity [4][5][6] , although these are multiband superconductors with up to five FeAs-related bands crossing the Fermi level [4][5][6][7] . Like the copper-oxide HTSCs, the superconducting state in the pnictides emerges on charge doping a magnetic parent compound [8][9][10] , with indications that the maximal T c occurs just as magnetism disappears [11][12][13] . The last point may well be of great significance, as the parent compounds in the two families are very different. For the pnictides, there are strong indications that they are itinerant systems with magnetism arising from a nesting-induced spin density wave (SDW). This is in contrast to the cuprates, where it is well established that the mother compounds are 'charge transfer insulators', where strongly repulsive electronic correlations yield an insulating and antiferromagnetic ground state despite a half-filled conduction band. It is therefore of great importance to obtain further insight into the differences and similarities of the pnictide and cuprate HTSCs. A particularly important question is how magnetism and superconductivity evolve on electron doping. In this context, muon spin rotation (μSR) is an ideal technique as it provides microscopic information corresponding to the bulk of a sample and there is a substantial body of μSR data that has been colle...
A quantum spin-liquid phase is an intriguing possibility for a system of strongly interacting magnetic units in which the usual magnetically ordered ground state is avoided owing to strong quantum fluctuations. It was first predicted theoretically for a triangular-lattice model with antiferromagnetically coupled S = 1/2 spins. Recently, materials have become available showing persuasive experimental evidence for such a state. Although many studies show that the ideal triangular lattice of S = 1/2 Heisenberg spins actually orders magnetically into a three-sublattice, non-collinear 120° arrangement, quantum fluctuations significantly reduce the size of the ordered moment. This residual ordering can be completely suppressed when higher-order ring-exchange magnetic interactions are significant, as found in nearly metallic Mott insulators. The layered molecular system κ-(BEDT-TTF)(2)Cu(2)(CN)(3) is a Mott insulator with an almost isotropic, triangular magnetic lattice of spin-1/2 BEDT-TTF dimers that provides a prime example of a spin liquid formed in this way. Despite a high-temperature exchange coupling, J, of 250 K (ref. 6), no obvious signature of conventional magnetic ordering is seen down to 20 mK (refs 7, 8). Here we show, using muon spin rotation, that applying a small magnetic field to this system produces a quantum phase transition between the spin-liquid phase and an antiferromagnetic phase with a strongly suppressed moment. This can be described as Bose-Einstein condensation of spin excitations with an extremely small spin gap. At higher fields, a second transition is found that suggests a threshold for deconfinement of the spin excitations. Our studies reveal the low-temperature magnetic phase diagram and enable us to measure characteristic critical properties. We compare our results closely with current theoretical models, and this gives some further insight into the nature of the spin-liquid phase.
Zero-field muon-spin-resonance and lower-critical-field data are presented for a wide range of Th concentrations in Uix Th v Bei3, spanning the region where both a superconducting and a second, lowertemperature phase transition are observed. Overall T-x phase boundaries are assigned and discussed according to the nature of the lower phase transition. Arguments for associating the lower phase with a possible magnetic (time-reversal-violating) superconducting state are given.
A quantum spin liquid is a state of matter where unpaired electrons' spins, although entangled, do not show magnetic order even at the zero temperature. The realization of a quantum spin liquid is a long-sought goal in condensed-matter physics. Although neutron scattering experiments on the two-dimensional spin-1/2 kagome lattice ZnCu 3 (OD) 6 Cl 2 and triangular lattice YbMgGaO 4 have found evidence for the hallmark of a quantum spin liquid at very low temperature (a continuum of magnetic excitations), the presence of magnetic and non-magnetic site chemical disorder complicates the interpretation of the data. Recently, the three-dimensional Ce 3+ pyrochlore lattice Ce 2 Sn 2 O 7 has been suggested as a clean, effective spin-1/2 quantum spin liquid candidate, but evidence of a spin excitation continuum is still missing. Here, we use thermodynamic, muon spin relaxation and neutron scattering experiments on single crystals of Ce 2 Zr 2 O 7 , a compound isostructural to Ce 2 Sn 2 O 7 , to demonstrate the absence of magnetic ordering and the presence of a spin excitation continuum at 35 mK. With no evidence of oxygen deficiency and magnetic/non-magnetic ion disorder seen by neutron diffraction and diffuse scattering measurements, Ce 2 Zr 2 O 7 may be a three-dimensional pyrochlore lattice quantum spin liquid material with minimum magnetic and non-magnetic chemical disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.