A simple esterification reaction is used to demonstrate standard procedures for determining the thermokinetic parameters of an exothermic reaction from adiabatic calorimetric data. The influence of variations in the heat capacity of the sample due to changes in temperature and concentration is explored. Shortcomings in the simple interpretation of adiabatic data are identified and isothermal heatflow calorimetry is used to reveal autocatalytic effects which were not apparent from the adiabatic experiments. A more rigourous interpretation of the adiabatic and isothermal data is outlined and used to predict the conditions which can lead to exothermic runaway in a batch reactor. Mathematical simulation of the conditions in a jacketed reactor is used to demonstrate the importance of developing reliable kinetic expressions before assessing the safety of a batch process.
Although the heat produced by aromatic nitration is relatively large in comparison to the heat produced by dilution, knowledge of the rate of heat generation due to dilution of the mixed acid is important for predicting the dynamic behaviour of discontinuous nitration processes. In this paper a mathematical model, its implementation and experimental validation of the heat effects due to dilution are described and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.