Conducting polyaniline-polymannuronate (PANI-PM) composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of polymannuronate (PM) (5, 10, 15, and 25%), the oxidative polymerization of aniline was achieved through the use of ammonium persulfate as oxidant. Structural morphology, FT-IR, and X-ray diffraction (XRD) studies support a strong interaction between PANI and PM. The temperature-dependent DC conductivity of PANI-PM composites was studied within the range of 300 T 500 K, presenting evidence for the transport properties of PANI-PM composites. Conductivity was analyzed through Mott's equation, which leveraged the variable range hopping model in three dimensions. Parameters such as density of states at the Fermi energy, hopping energy, and hopping distance were calculated. Based on the above factors, the synthesis of PANI-PM composites envisages the future development of biomimetic materials for the creation of a new bionanocomposite as a multicomponent and multifunctional material.
Two types of nano composite were obtained by in situ chemical method in polyaniline (PANI)/dodecylbenzenesulfonic acid (DBSA) system depending on the use of either ammonium persulfate (APS) or ferric chloride (FeCl 3 ) as the oxidant. In order to study the difference of the two composites in the surface characteristics, thermal stability, and electric properties, the composite films were studied by transmission electron microscopy (TEM), Xray diffraction (XRD), thermogravimetric analysis (TGA), and temperature dependent DC electrical conductivity. The results revealed a large difference in the surface morphology, thermal stability, and the microstructure properties between the two composites, and these differences were considered responsible for the molecular order and conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.