During the course of an entire lifespan, tissue repair and regeneration is made possible by the presence of adult stem cells. Stem cell expansion, maintenance, and differentiation must be tightly controlled to assure longevity. Hematopoietic stem cells (HSC) are greatly solicited given the daily high blood cell turnover. Moreover, several bone marrow-derived cells including HSC, mesenchymal stromal cells (MSC), and endothelial progenitor cells (EPC) also significantly contribute to peripheral tissue repair and regeneration, including tumor formation. Therefore, factors influencing bone marrow-derived cell proliferation and functions are likely to have a broad impact. Aging has been identified as one of these factors. One hypothesis is that aging directly affects stem cells as a consequence of exhaustive proliferation. Alternatively, it is also possible that aging indirectly affects stem cells by acting on their microenvironment. Cellular senescence is believed to have evolved as a tumor suppressor mechanism capable of arresting growth to reduce risk of malignancy. In opposition to apoptosis, senescent cells accumulate in tissues. Recent evidence suggests their accumulation contributes to the phenotype of aging. Senescence can be activated by both telomere-dependent and telomere-independent pathways. Genetic alteration, genome-wide DNA damage, and oxidative stress are inducers of senescence and have recently been identified as occurring in bone marrow-derived cells. Below is a review of the link between cellular senescence, aging, and bone marrow-derived cells, and the possible consequences aging may have on bone marrow trans plantation procedures and emerging marrow-derived cell-based therapies.
Naturally occurring drug resistance genes of human origin can be exploited for selection of genetically engineered cells co-expressing a desired therapeutic transgene. Their nonimmunogenicity in clinical applications would be a major asset. Human cytidine deaminase (hCD) is a chemoresistance gene that inactivates cytotoxic cytosine nucleoside analogs, such as cytosine arabinoside (Ara-C). The aim of this study was to establish if the hCD gene can serve as an ex vivo dominant selectable marker in engineered bone marrow stromal cells (MSCs). A bicistronic retrovector comprising the hCD cDNA and the green fluorescent protein (GFP) reporter gene was generated and used for transduc
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.