Potential mechanisms underlying prenatal programming of hypertension in adult life were investigated using a rat model in which maternal protein intake was restricted to 9% vs. 18% casein (control) during pregnancy. Maternal low protein (MLP) offspring exhibit glucocorticoid-dependent raised systolic blood pressure throughout life (20-30 mm Hg above the control). To determine the molecular mechanisms underlying the role of alterations in glucocorticoid hormone action in the prenatal programming of hypertension in MLP offspring, tissues were analyzed for expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11betaHSD1, 11betaHSD2, and corticosteroid-responsive Na/K-adenosine triphosphatase alpha1 and beta1. GR protein (95 kDa) and messenger RNA (mRNA) expression in kidney, liver, lung, and brain was more than 2-fold greater in MLP vs. control offspring during fetal and neonatal life and was more than 3-fold higher during subsequent juvenile and adult life (P < 0.01). This was associated with increased levels of Na/K-adenosine triphosphatase alpha1- and beta1-subunit mRNA expression. Levels of MR gene expression remained unchanged. Exposure to the MLP diet also resulted in markedly reduced levels of 11betaHSD2 expression in the MLP placenta on days 14 and 20 of gestation (P < 0.001), underpinning similar effects on 11betaHSD2 enzyme activity that we reported previously. Levels were also markedly reduced in the kidney and adrenal of MLP offspring during fetal and postnatal life (P < 0.001). This programmed decline in 11betaHSD2 probably contributes to marked increases in glucocorticoid hormone action in these tissues and potentiates both GR- and MR-mediated induction of raised blood pressure. In contrast, levels of 11betaHSD1 mRNA expression in offspring central and peripheral tissues remained unchanged. In conclusion, we have demonstrated that mild protein restriction during pregnancy programs tissue-specific increases in glucocorticoid hormone action that are mediated by persistently elevated expression of GR and decreased expression of 11betaHSD2 during adult life. As glucocorticoids are potent regulators not only of fetal growth but also of blood pressure, our data suggest important potential molecular mechanisms contributing to the prenatal programming of hypertension by maternal undernutrition in the rat.
The purpose of this review is to consider how current animal models of fetal programming contribute to knowledge of the metabolic syndrome in adult humans. Low birth weight infants have an increased risk of developing cardiovascular and coronary heart disease, hypertension, diabetes and stroke in adulthood. A number of animal studies confirm the association between events during fetal life and subsequent adult disease. This review considers how these have contributed to our understanding of this relationship, and how they may help to uncover the underlying mechanisms. The importance of dietary, pharmacological, genetic and surgical models is assessed, and their usefulness in the prevention of human disease evaluated. Although progress has been made, further investigations using animals are needed to clarify the mechanisms involved in the programming of adult disease. Once these processes are understood, it may be possible to identify and protect at-risk individuals.
Potential mechanisms underlying prenatal programming of hypertension in adult life were investigated using a rat model in which maternal protein intake was restricted to 9% vs. 18% casein (control) during pregnancy. Maternal low protein (MLP) offspring exhibit glucocorticoid-dependent raised systolic blood pressure throughout life (20-30 mm Hg above the control). To determine the molecular mechanisms underlying the role of alterations in glucocorticoid hormone action in the prenatal programming of hypertension in MLP offspring, tissues were analyzed for expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11betaHSD1, 11betaHSD2, and corticosteroid-responsive Na/K-adenosine triphosphatase alpha1 and beta1. GR protein (95 kDa) and messenger RNA (mRNA) expression in kidney, liver, lung, and brain was more than 2-fold greater in MLP vs. control offspring during fetal and neonatal life and was more than 3-fold higher during subsequent juvenile and adult life (P < 0.01). This was associated with increased levels of Na/K-adenosine triphosphatase alpha1- and beta1-subunit mRNA expression. Levels of MR gene expression remained unchanged. Exposure to the MLP diet also resulted in markedly reduced levels of 11betaHSD2 expression in the MLP placenta on days 14 and 20 of gestation (P < 0.001), underpinning similar effects on 11betaHSD2 enzyme activity that we reported previously. Levels were also markedly reduced in the kidney and adrenal of MLP offspring during fetal and postnatal life (P < 0.001). This programmed decline in 11betaHSD2 probably contributes to marked increases in glucocorticoid hormone action in these tissues and potentiates both GR- and MR-mediated induction of raised blood pressure. In contrast, levels of 11betaHSD1 mRNA expression in offspring central and peripheral tissues remained unchanged. In conclusion, we have demonstrated that mild protein restriction during pregnancy programs tissue-specific increases in glucocorticoid hormone action that are mediated by persistently elevated expression of GR and decreased expression of 11betaHSD2 during adult life. As glucocorticoids are potent regulators not only of fetal growth but also of blood pressure, our data suggest important potential molecular mechanisms contributing to the prenatal programming of hypertension by maternal undernutrition in the rat.
The perinatal environment is a powerful determinant of risk for developing disease in later life. Here, we have shown that maternal undernutrition causes dramatic changes in heart structure and hypothalamo-pituitary-adrenal (HPA) function across two generations. Pregnant guinea pigs were fed 70% of normal intake from gestational days 1-35 (early restriction; ER), or 36-70 (late restriction; LR). Female offspring (F 1 ) were mated and fed ad libitum to create second generation (F 2 ) offspring. Heart morphology, blood pressure, baroreceptor and HPA function were assessed in male F 1 and F 2 offspring. ER F1 males exhibited elevated blood pressure, increased left ventricular (LV) wall thickness and LV mass. These LV effects were maintained in the ER F2 offspring. Maternal undernutrition increased basal cortisol and altered HPA responsiveness to challenge in both generations; effects were greatest in LR groups. In conclusion, moderate maternal undernutrition profoundly modifies heart structure and HPA function in adult male offspring for two generations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.