Despite extensive analysis of phosphoinositide 3-hydroxykinases (PI 3-kinases) at the molecular level, comparatively little is known about the mechanisms by which products of these enzymes exert their expected second-messenger functions. This study examines the metabolism of D-3 phosphoinositides in mouse Ph-N2 fibroblasts lacking the platelet-derived growth factor (PDGF) alpha-receptor. Treatment of these cultures with BB PDGF, but not AA PDGF, resulted in transient activation of PI 3-kinase activity measured in vitro. Treatment of myo-[3H]inositol-labelled Ph-N2 cells with BB PDGF resulted in the rapid induction of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 and, to a smaller extent, PtdIns3P. The appearance of PtdIns(3,4,5)P3 preceded that of PtdIns(3,4)P2 and PtdIns3P after the addition of PDGF, suggesting that PtdIns(4,5)P2 is the preferred substrate of the agoniststimulated PI 3-kinase in intact cells. Treatment of both resting and PDGF-stimulated cells with the fungal metabolite wortmannin resulted in pronounced, selective effects on the levels of all D-3 phosphoinositides. Kinetic studies with this PI 3-kinase inhibitor revealed the presence of at least two independent routes for the biosynthesis of D-3 phosphoinositides in PDGF-treated cells.
Abstract.We compare assimilation and respiration rates, and water use strategies in four divergent ecosystems located in cold-continental central Siberia and in semi-arid southern Africa. These seemingly unrelated systems have in common a harsh and highly seasonal environment with a very sharp transition between the dormant and the active season, with vegetation facing dry air and soil conditions for at least part of the year. Moreover, the northern high latitudes and the semi-arid tropics will likely experience changes in key environmental parameters (e.g., air temperature and precipitation) in the future; indeed, in some regions marked climate trends have already been observed over the last decade or so.The magnitude of instantaneous or daily assimilation and respiration rates, derived from one to two years of eddy covariance measurements in each of the four ecosystems, was not related to the growth environment. For instance, respiration rates were clearly highest in the two deciduous systems included in the analysis (a Mopane woodland in northern Botswana and a Downy birch forest in Siberia; >300 mmol m −2 d −1 ), while assimilation rates in the Mopane woodland were relatively similar to a Siberian Scots pine canopy for a large part of the active season (ca. 420 mmol m −2 d −1 ). Acknowledging the limited number of ecosystems compared here, these data nevertheless demonstrate that factors like vegetation type, canopy phenology or ecosystem age can override larger-scale climate differences in terms of their effects on carbon assimilation and respiration rates.By far the highest rates of assimilation were observed in Downy birch, an early successional species. These were achieved at a rather conservative water use, as indicated by relatively low levels of λ, the marginal water cost of plant Correspondence to: A. Arneth (almut.arneth@nateko.lu.se) carbon gain. Surprisingly, the Mopane woodland growing in the semi-arid environment had significantly higher values of λ. However, its water use strategy included a very plastic response to intermittently dry periods, and values of λ were much more conservative overall during a rainy season with low precipitation and high air saturation deficits. Our comparison demonstrates that forest ecosystems can respond very dynamically in terms of water use strategy, both on interannual and much shorter time scales. But it remains to be evaluated whether and in which ecosystems this plasticity is mainly due to a short-term stomatal response, or alternatively goes hand in hand with changes in canopy photosynthetic capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.