Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2 ؊/؊ mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88-and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88 ؊/؊ and TRIF ؊/؊ mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4 ؊/؊ eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease. Bacillus cereus is a Gram-positive, spore-forming, and beta-hemolytic soil bacterium (1). Commonly identified as a causative agent of foodborne illnesses, B. cereus is also associated with a multitude of clinical conditions, such as central nervous system infections (2), pneumonia (3), endocarditis (4), and gas-gangrene-like cutaneous infections (5). B. cereus also causes a virulent form of endophthalmitis, an intraocular inflammatory condition resulting from the introduction of microorganisms into the posterior segment of the eye following surgery or injury or from a distant site of infection. This infection causes irreversible damage to the retina, often leading to vision loss within 1 or 2 days (6). Typically, B. cereus endophthalmitis occurs following a penetrating eye injury (posttraumatic) with retained intraocular foreign bodies (7, 8) but has also been reported in postoperative patients (9-11). Fewer than 30% of posttraumatic B. cereus endophthalmitis patients retained useful vision, and out of these, only 9% retained 20/70 vision or better (7, 12). Moreover, 48% of B. cereus and other Bacillus species infections required evisceration or enucleation of the eye despite therapeutic intervention (7, 12). Intraocular inflammation that occurs during B. cereus endophthalmitis interferes with the clarity of the visual axis, contributing to disruption...
During intraocular bacterial infections, the primary innate responders are neutrophils, which may cause bystander damage to the retina or perturb the clarity of the visual axis. We hypothesized that cytokine IL-6 and chemokine CXCL1 contributed to rapid neutrophil recruitment during Bacillus cereus endophthalmitis, a severe form of intraocular infection that is characterized by explosive inflammation and retinal damage that often leads to rapid vision loss. To test this hypothesis, we compared endophthalmitis pathogenesis in C57BL/6J, IL-6, and CXCL1 mice. Bacterial growth in eyes of CXCL1, IL-6, and C67BL/6J mice was similar. Retinal function retention was greater in eyes of IL-6 and CXCL1 mice compared with that of C57BL/6J, despite these eyes having similar bacterial burdens. Neutrophil influx into eyes of CXCL1 mice was reduced to a greater degree compared with that of eyes of IL6 mice. Histology confirmed significantly less inflammation in eyes of CXCL1 mice, but similar degrees of inflammation in IL6 and C57BL/6J eyes. Because inflammation was reduced in eyes of infected CXCL1 mice, we tested the efficacy of anti-CXCL1 in B. cereus endophthalmitis. Retinal function was retained to a greater degree and there was less overall inflammation in eyes treated with anti-CXCL1, which suggested that anti-CXCL1 may have therapeutic efficacy in limiting inflammation during B. cereus endophthalmitis. Taken together, our results indicate that absence of IL-6 did not affect overall pathogenesis of endophthalmitis. In contrast, absence of CXCL1, in CXCL1 mice or after anti-CXCL1 treatment, led to an improved clinical outcome. Our findings suggest a potential benefit in targeting CXCL1 to control inflammation during B. cereus and perhaps other types of intraocular infections.
Bacterial endophthalmitis is a potentially blinding intraocular infection. The bacterium Bacillus cereus causes a devastating form of this disease which progresses rapidly, resulting in significant inflammation and loss of vision within a few days. The outer surface of B. cereus incites the intraocular inflammatory response, likely through interactions with innate immune receptors such as TLRs. This study analyzed the role of B. cereus pili, adhesion appendages located on the bacterial surface, in experimental endophthalmitis. To test the hypothesis that the presence of pili contributed to intraocular inflammation and virulence, we analyzed the progress of experimental endophthalmitis in mouse eyes infected with wild type B. cereus (ATCC 14579) or its isogenic pilus-deficient mutant (ΔbcpA-srtD-bcpB or ΔPil). One hundred CFU were injected into the mid-vitreous of one eye of each mouse. Infections were analyzed by quantifying intraocular bacilli and retinal function loss, and by histology from 0 to 12 h postinfection. In vitro growth and hemolytic phenotypes of the infecting strains were also compared. There was no difference in hemolytic activity (1:8 titer), motility, or in vitro growth (p>0.05, every 2 h, 0-18 h) between wild type B. cereus and the ΔPil mutant. However, infected eyes contained greater numbers of wild type B. cereus than ΔPil during the infection course (p≤0.05, 3-12 h). Eyes infected with wild type B. cereus experienced greater losses in retinal function than eyes infected with the ΔPil mutant, but the differences were not always significant. Eyes infected with ΔPil or wild type B. cereus achieved similar degrees of severe inflammation. The results indicated that the intraocular growth of pilus-deficient B. cereus may have been better controlled, leading to a trend of greater retinal function in eyes infected with the pilus-deficient strain. Although this difference was not enough to significantly alter the severity of the inflammatory response, these results suggest a potential role for pili in protecting B. cereus from clearance during the early stages of endophthalmitis, which is a newly described virulence mechanism for this organism and this infection.
BackgroundEndophthalmitis is a serious intraocular infection that frequently results in significant inflammation and vision loss. Because current therapeutics are often unsuccessful in mitigating damaging inflammation during endophthalmitis, more rational targets are needed. Toll-like receptors (TLRs) recognize specific motifs on invading pathogens and initiate the innate inflammatory response. We reported that TLR4 contributes to the robust inflammation which is a hallmark of Bacillus cereus endophthalmitis. To identify novel, targetable host inflammatory factors in this disease, we performed microarray analysis to detect TLR4-dependent changes to the retinal transcriptome during B. cereus endophthalmitis.ResultsC57BL/6 J and TLR4−/− mouse eyes were infected with B. cereus and retinas were harvested at 4 h postinfection, a time representing the earliest onset of neutrophil infiltration. Genes related to acute inflammation and inflammatory cell recruitment including CXCL1 (KC), CXCL2 (MIP2-α), CXCL10 (IP-10), CCL2 (MCP1), and CCL3 (MIP1-α)) were significantly upregulated 5-fold or greater in C57BL/6 J retinas. The immune modulator IL-6, intercellular adhesion molecule ICAM1, and the inhibitor of cytokine signal transduction SOCS3 were upregulated 25-, 11-, and 10-fold, respectively, in these retinas. LIF, which is crucial for photoreceptor cell survival, was increased 6-fold. PTGS2/COX-2, which converts arachidonic acid to prostaglandin endoperoxide H2, was upregulated 9-fold. PTX3, typically produced in response to TLR engagement, was induced 15-fold. None of the aforementioned genes were upregulated in TLR4−/− retinas following B. cereus infection.ConclusionsOur results have identified a cohort of mediators driven by TLR4 that may be important in regulating pro-inflammatory and protective pathways in the retina in response to B. cereus intraocular infection. This supports the prospect that blocking the activation of TLR-based pathways might serve as alternative targets for Gram-positive and Gram-negative endophthalmitis therapies in general.Electronic supplementary materialThe online version of this article (10.1186/s12886-018-0764-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.