The near infrared reflection peak in some frogs has been speculated to be either for enhancing crypticity, or to help them with thermoregulation. The theoretical background for the thermoregulatory processes has been established before, but little consideration has been given to the contribution from the frogs' reflection spectra differences. In this investigation, the reflection spectra from a range of different species of frogs were taken and combined with precise surface area measurements of frogs and an approximation to the mass transfer coefficient of agar frog models. These were then used to simulate the temperature and water evaporation in anurans with and without the near infrared reflective peak. We have shown that the presence of the near infrared reflection peak can contribute significantly to the temperature and evaporative water loss of a frog. The significance of the steady-state temperature differences between frogs with and without the near infrared reflection peak is discussed in a realistic and an extreme scenario. Temperature differences of up to 3.2°C were found, and the rehydration period was increased by up to 16.7%, although this does not reduce the number of rehydration events between dawn and dusk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.