The Cherenkov Telescope Array (CTA) is the major next-generation observa-7 tory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.
The dynamic instability of the moving vortex lattice at high driving currents in NbN/CuNi-based and NbN
nanostripes designed for optical detection has been studied. By applying the model proposed by Larkin and
Ovchinnikov [Zh. Eksp. Teor. Fiz. 68, 1915 (1975)], from the critical velocity v
∗ for the occurrence of the
instability, it was possible to estimate the values of the quasiparticle relaxation times τE. The results show that
the NbN/CuNi-based devices are characterized by shorter values of τE compared to that of NbN
Heterojunction photodetector based on reduced graphene oxide (rGO) has been realized using a spin coating technique. The electrical and optical characterization of bare GO and thermally reduced GO thin films deposited on glass substrate has been carried out. Ultraviolet–visible–infrared transmittance measurements of the GO and rGO thin films revealed broad absorption range, while the absorbance analysis evaluates rGO band gap of about 2.8 eV. The effect of GO reduction process on the photoresponse capability is reported. The current–voltage characteristics and the responsivity of rGO/n-Si based device have been investigated using laser diode wavelengths from UV up to IR spectral range. An energy band diagram of the heterojunction has been proposed to explain the current versus voltage characteristics. The device demonstrates a photoresponse at a broad spectral range with a maximum responsivity and detectivity of 0.20 A/W and 7 × 1010 cmHz/W, respectively. Notably, the obtained results indicate that the rGO based device can be useful for broadband radiation detection compatible with silicon device technology.
In this work, the authors investigated MoO3 films with thickness between 30 nm and 1 μm grown at room temperature by solid phase deposition on polycrystalline Cu substrates. Atomic force microscopy, scanning electron microscopy, and scanning tunneling microscopy revealed the presence of a homogenous MoO3 film with a “grainlike” morphology, while Raman spectroscopy showed an amorphous character of the film. Nanoindentation measurements evidenced a coating hardness and stiffness comparable with the copper substrate ones, while Auger electron spectroscopy, x-ray absorption spectroscopy, and secondary electron spectroscopy displayed a pure MoO3 stoichiometry and a work function ΦMoO3 = 6.5 eV, 1.8 eV higher than that of the Cu substrate. MoO3 films of thickness between 30 and 300 nm evidenced a metallic behavior, whereas for higher thickness, the resistance–temperature curves showed a semiconducting character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.