A discussion is presented on the results and predictive capabilities of a two-dimensional (2D) hybrid Hall effect thruster (HET) model. It is well known that classical (collision-induced) cross-field electron transport and energy losses are not sufficient to explain the observed HET characteristics. The 2D, quasineutral, hybrid discharge model uses empirical parameters to describe additional, anomalous electron transport and energy loss phenomena. It is shown that, for properly adjusted empirical parameters, the model can qualitatively reproduce the observed thruster behavior over a large range of operating conditions. The ionization and transit-time oscillations predicted by the model are described, and their consequences on the time-averaged thruster properties are discussed. Finally, the influence of the empirical parameters on the model results is shown, especially on quantities that can be measured experimentally.
A two-dimensional hybrid model of the discharge in Hall thrusters including the near outside region between cathode and exhaust plane has been developed. The topology of the applied magnetic field is calculated with a finite element software and used as input for the discharge code. In this paper, we examine the influence of the magnetic field topology on the thruster operation and properties, with emphasis on the thruster lifetime. Results show that a configuration with a zero magnetic field and a smaller region with large magnetic field tends to decrease wall erosion and low frequency current oscillations keeping a high level of performance.
The origin of anomalous electron transport across the magnetic field in the channel of a Hall effect thruster has been the subject of controversy, and the relative importance of electron-wall collisions and plasma turbulence on anomalous transport is not clear. From comparisons between Fabry-Pérot measurements and hybrid model calculations of the ion velocity profile in a 5kW Hall effect thruster, we deduce that one and the same mechanism is responsible for anomalous electron transport inside and outside the Hall effect thruster channel. This suggests that the previous assumption that Bohm anomalous conductivity is dominant outside the thruster channel whereas electron-wall conductivity prevails inside the channel is not valid.
This paper is devoted to the study of the effects of electron-wall interactions on cross magnetic field electron momentum and energy losses in Hall effect thrusters. By coupling a semianalytical model of the wall sheath similar to models used by several authors in this context, with a two-dimensional hybrid simulation of a Hall effect thruster, we find that the cross magnetic field conductivity enhanced by electron-wall collisions and secondary electron emission is not sufficient to explain the conductivity deduced from experiments. Calculated current-voltage curves including electron-wall collisions from a standard sheath model as the sole “anomalous” conductivity mechanism do not reproduce the measurements, especially at high discharge voltages, and for various wall ceramics. Results also show that a one-dimensional description of electron-wall collisions with a constant radial plasma density profile as used by many authors leads to an overestimation of the contribution of electron-wall interactions to cross magnetic field conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.