Rainbow trout (Oncorhynchus mykiss) intestinal strips (n = 10) were mounted in an isolated organ bath and the effect of incremental doses of compound 48/80 was recorded. Compound 48/80 induced concentration-related contraction in all the examined strips following a sigmoidal dose-response curve fit. Values for maximal contraction (E(max) , g cm(-2)), negative logarithm of the EC(50) (pD(2)), and hill slope were, respectively (mean±standard error), 12.88 ± 0.51, 1.88 ± 0.05, 1.49 ± 0.27. The histological modification induced on mast cells (MCs) due to compound 48/80 was characterized by mean of gray-levels and texture analysis. Significant differences were observed between gray-levels values (Linear mixed model, P<0.01), contrast, and entropy (Linear mixed model, P<0.05) of MCs from compound 48/80-treated strips compared with MCs from untreated strips. Moreover, maximal intestinal contraction (due to compound 48/80) correlates positively and significantly (Pearson and Spearman correlations, P<0.05) with degranulation intensity determined by means of gray-levels analysis. Four antisera were tested on intestinal sections and no MCs positive to serotonin, substance P, met-enkephalin, and bombesin were found. This study demonstrates that compound 48/80 induces the degranulation of trout intestinal MCs ex vivo, and that the aforementioned degranulation promotes a concentration-dependent intestinal contraction.
Fractal analysis is a reliable method for describing, summarizing object complexity and heterogeneity and has been widely used in biology and medicine to deal with scale, size and shape management problems. The aim of present survey was to use fractal analysis as a complexity measure to characterize mast cells (MCs) degranulation in a rainbow trout ex vivo model (isolated organ bath). Compound 48/80, a condensation product of N-methyl-p-methoxyphenethylamine with formaldehyde, was adopted as MCs degranulation agent in trout intestinal strips. Fractal dimension (D), as a measure of complexity, 'roughness' and lacunarity (λ), as a measure of rotational and translational invariance, heterogeneity, in other words, of the texture, were compared in MCs images taken from intestinal strips before and after compound 48/80 addition to evaluate if and how they were affected by degranulation. Such measures were also adopted to evaluate their discrimination efficacy between compound 48/80 degranulated group and not degranulated group and the results were compared with previously reported data obtained with conventional texture analysis (image histogram, run-length matrix, co-occurrence matrix, autoregressive model, wavelet transform) on the same experimental material. Outlines, skeletons and original greyscale images were fractal analysed to evaluate possible significant differences in the measures values according to the analysed feature. In particular, and considering outline and skeleton as analysed features, fractal dimensions from compound 48/80 treated intestinal strips were significantly higher than the corresponding untreated ones (paired t and Wilcoxon test, p < 0.05), whereas corresponding lacunarity values were significantly lower (paired Wilcoxon test, p < 0.05) but only for outline as analysed feature. Outlines roughness increase is consistent with an increased granular mediators interface, favourable for their biological action; while lacunarity (image heterogeneity) reduction is consistent with the biological informative content decrease, due to granule content depletion. In spite of the significant differences in fractal dimension and lacunarity values registered according to the analysed feature (greyscale obtained values were, on average, lower than those obtained from outlines and skeletons; General Linear Model, p < 0.01), the discrimination power between not degranulated and degranulated MCs was, on average, the same and fully comparable with previously performed texture analysis on the same experimental material (outline and skeleton misclassification error, 20% [two false negative cases]; greyscale misclassification error, 30% [two false negative cases and one false positive case]). Fractal analysis proved to be a reliable and objective method for the characterization of MCs degranulation.
Histopathology, histochemistry and immunohistochemistry of the integument of European eel, Anguilla anguilla (Linnaeus, 1758), infected by Myxidium sp. are reported. Skin samples from affected and unaffected eels were dissected, formalin fixed, paraffin embedded, sectioned and stained with H&E, Periodic acid-Schiff's staining method, Alcian Blue 8 GX pH 2.5/Periodic acid-Schiff's and McCallum-Goodpasture's Gram stain. Moreover, immunohistochemistry was performed using a primary polyclonal laminin antibody. Histologically, cysts (diameter 2-3 mm) were observed mainly under the scale pockets, encircled by a thin collagen layer, lined by elongated, flattened fibroblasts and containing bipolar, PAS- and Gram-positive spores with opposite polar capsules. The epidermis stretched by the underlying cyst appeared dysplastic, thinned with a significant reduction in mucous cells number. Only inconsistent and aspecific inflammatory reaction was noted around the cysts at the dermis/epidermis interface. Intense laminin-like protein immunolabel was documented in the plasmodial ectoplasm and related to host anergia. This was the first report of laminin immunolabel in a member of the Myxozoa. Epidermal dysplasia represents likely an aspecific response against the underlying tensile force exerted by the developing parasite cyst, while fibroblast and collagen encapsulation denote a parasite-driven host response protecting, rather than harming, the encircled parasite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.