Aims. The planetary system around the M star Gliese 581 consists of a hot Neptune (Gl 581b) and two super-Earths (Gl 581c and Gl 581d). The habitability of this system with respect to the super-Earths is investigated following a concept that studies the long-term possibility of photosynthetic biomass production on a dynamically active planet. Methods. A thermal evolution model for a super-Earth is used to calculate the sources and sinks of atmospheric carbon dioxide. The habitable zone is determined by the limits of photosynthetic life on the planetary surface. Models with different ratios of land / ocean coverage are investigated. Results. The super-Earth Gl 581c is clearly outside the habitable zone, since it is too close to the star. In contrast, Gl 581d is a tidally locked habitable super-Earth near the outer edge of the habitable zone. Despite the adverse conditions on this planet, at least some primitive forms of life may be able to exist on its surface. Therefore, Gl 581d is an interesting target for the planned TPF/Darwin missions to search for biomarkers in planetary atmospheres.
Abstract. A general modeling scheme for assessing the suitability for life of extrasolar planets is presented. The scheme focuses on the identification of the "habitable zone" in main sequence star planetary systems accommodating Earth-like components. Our definition of habitability is based on the long-term possibility of photosynthetic biomass production under geodynamic conditions. Therefore all the pertinent astrophysical, climatological, biogeochemical, and geodynamic processes involved in the generation of photosynthesis-driven life conditions are taken into account. Implicitly, a cogenetic origin of the central star and the orbiting planet is assumed. A geostatic model version is developed and investigated in parallel for demonstration purposes. The numerical solution of the advanced geodynamic model yields realistic lookup diagrams for convenient habitability determination. As an illustration, the MACHO-98-BLG-35 event is scrutinized. It is shown that this event is definitely not tantamount to the discovery of one of Gaia's sisters.
The long‐term co‐evolution of the geosphere–biospere complex from the Proterozoic up to 1.5 billion years into the planet's future is investigated using a conceptual earth system model including the basic geodynamic processes. The model focusses on the global carbon cycle as mediated by life and driven by increasing solar luminosity and plate tectonics. The main CO2 sink, the weathering of silicates, is calculated as a function of biologic activity, global run‐off and continental growth. The main CO2 source, tectonic processes dominated by sea‐floor spreading, is determined using a novel semi‐empirical scheme. Thus, a geodynamic extension of previous geostatic approaches can be achieved. As a major result of extensive numerical investigations, the “terrestrial life corridor”, i.e., the biogeophysical domain supporting a photosynthesis‐based ecosphere in the planetary past and in the future, can be identified. Our findings imply, in particular, that the remaining life‐span of the biosphere is considerably shorter (by a few hundred million years) than the value computed with geostatic models by other groups. The “habitable‐zone concept” is also revisited, revealing the band of orbital distances from the sun warranting earth‐like conditions. It turns out that this habitable zone collapses completely in some 1.4 billion years from now as a consequence of geodynamics.
Questions of how water arrived on the Earth's surface, how much water is contained in the Earth system as a whole, and how much water will be available in the future in the surface reservoirs are of central importance to our understanding of the Earth. To answer the question about the fate of the Earth's ocean, one has to study the global water cycle under conditions of internal and external forcing processes. Modern estimates suggest that the transport of water to the surface is five times smaller than water movement to the mantle, so that the Earth will lose all its sea-water in one billion years from now. This straightforward extrapolation of subduction-zone fluxes into the future seems doubtful. Using a geophysical modelling approach it was found that only 27% of the modern ocean will be subducted in one billion years. Internal feedbacks will not be the cause of the ocean drying out. Instead, the drying up of surface reservoirs in the future will be due to the increase in temperature caused by a maturing Sun connected to hydrogen escape to outer space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.