Objectives To evaluate the use of local anaesthesia (LA) in 5-aminolaevulinic acid (ALA) photodynamic therapy (PDT) for superficial transitional cell carcinoma (TCC) of the bladder, and to provide further toxicity and tolerability data on this new method within the context of a phase 1 trial. Patients and methods ALA PDT was administered to 19 patients with recurrent superficial TCC (stage Ta/carcinoma in situ, grades 1-3) using escalating doses of ALA (3-6%) and 633 nm laser light (25-50 J/cm 2 ) under various LA (lignocaine) protocols. Pain was assessed using a linear analogue scale from 0 to 10. The endpoints of tolerability and toxicity were assessed for the different LA, light and ALA doses, with lignocaine levels. Results ALA PDT is painful and requires some form of anaesthesia. The discomfort was immediate, associated with bladder spasm, and was a function of the ALA concentration rather than the total light dose given. Simple passive diffusion (PD) of 2% lignocaine instilled for 40 min before PDT gave adequate anaesthesia with 3% ALA (n=8; median pain score 1, range 0-2). With 6% ALA the pain was dramatically increased using PD (n=6; median pain score 8, range 5-10) and therefore the more potent LA technique of electromotive drug administration (EMDA) of 2% lignocaine was used, with excellent results (n=3; median pain score 1, range 0-2). All patients had transient bladder irritability that typically lasted 9-12 days, with no subjective/ objective change in long-term bladder function. No other toxicity was reported. Serum lignocaine levels were minimal. Conclusion Bladder ALA PDT is both safe and feasible under LA. At a dose of 3% ALA, the procedure was well-tolerated using PD of lignocaine. At higher doses (6% ALA) more effective anaesthesia is required and this can be obtained satisfactorily with EMDA of lignocaine. With refinement, ALA PDT may be feasible as an outpatient treatment for superficial bladder TCC.
In photodynamic therapy, a photosensitizing drug is activated by visible light and in the presence of oxygen, results in local cell death. This evolving modality is now being used to treat and palliate a very wide variety of human solid tumors and carcinoma-in-situ lesions. With regard to bladder cancer, advances in drug development and modern light delivery techniques mean that photodynamic therapy shows promise in the treatment of superficial bladder cancer resistant to conventional treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.